MMaterialsgateNEWS 2017/09/28

Related MaterialsgateCARDS

Energy: UNIST Researchers Develop Wearable Solar Thermoelectric Generator

Credit: UNIST

A recent study, led by Professor Kyoung Jin Choi in the School of Materials Science and Engineering at UNIST has introduced a new advanced energy harvesting system, capable of generating electricity by simply being attached to clothes, windows, and outer walls of a building.

This new device is based on a temperature difference between the hot and cold sides. The temperature difference can be increased as high as 20.9 °C, which is much higher than the typical temperature differences of 1.5 to 4.1 °C of wearable thermoelectric generators driven by body heat. The research team expects that their wearable solar thermoelectric generator proposes a promising way to further improve the efficiency by raising the temperature difference.

Energy harvesting is a diverse field encompassing many technologies, which involve a process that captures small amounts of energy that would otherwise be lost as heat, light, sound, vibration, or movement. A thermoelectric generator (TEGs) refers to a device that converts waste heat energy, such as solar energy, geothermal energy, and body heat into additional electrical power.

There has been a great increase in the study of wearable thermoelectric (TE) generators using the temperature difference between the body heat and surrounding environment. However, one of the main drawbacks of wearable TEG techniques driven by body heat was that such temperature difference is only 1 ~ 4 ℃ and this has hindered further commercialization.

The research team solved this low temperature difference faced by conventional wearable TEGs by introducing a local solar absorber on a PI substrate. The solar absorber is a five-period Ti/MgF2 superlattice, in which the structure and thickness of each layer was designed for optimal absorption of sunlight. This has increased the temperature difference as high as 20.9 °C, which is the highest value of all wearable TEGs reported to date.

“Through this study, we have secured a temperature difference with the ten-fold increase from the conventional wearable solar thermoelectric generators,” says Yeon Soo Jung in the Graduate School of Materials Science and Engineering at UNIST. “Since the output of a TE generator is proportional to the square root of the temperature difference, one can significantly increase the output with the help of this technology.”

In this study, Professor Choi and his team designed a noble wearable solar thermoelectric generator (W-STEG) by integrating flexible BiTe-based TE legs and sub-micron thick solar absorbers on a polymide (PI) substrate. The TE legs were prepared by dispenser printing with an ink consisting of mechanically alloyed BiTe-based powders and an Sb2Te3-based sintering additive dispersed in glycerol. They report that a W-STEG comprising 10 pairs of p-n legs has an open-circuit voltage of 55.15 mV and an output power of 4.44 μW when exposed to sunlight.

“Our new werable STEG is expected to be useful in various applications, such as in self-powered wearable electronic devices,” says Professor Choi. “It will also serve as a catalyst to further improve the future wearable electronic technology market.”

The findings of the research have been published in the August issue of the prestigious journal Nano Energy (IF: 12.34). This work has been supported by the R&D Convergence Program of National Research Council of Science & Technology (NST) of Republic of Korea and the KIST-UNIST partnership program.

Source: Ulsan National Institute of Science and Technology (UNIST) – 25.09.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: OIST Nanoparticles by Design Unit

As the world shifts towards renewable energy, moving on from fossil fuels, but at the same time relying on ever more energy-gobbling devices, there is a fast-growing need for larger high-performance batteries.

Lithium-ion batteries (LIBs) power most of our portable electronics, but they are flammable and can even explode, as it happened to a recent model of smartphone. To prevent such accidents, the current solution is to encapsulate the anode – which is the negative (-) electrode of the battery, opposite to the cathode (+) - into a graphite frame, thus insulating the lithium ions. However, such casing is limited to a small scale to avoid physical collapse, therefore restraining the capacity - the amount of energy you can store - of the battery. Looking for better materials, silicon offers great advantages over carbon graphite for lithium batteries in terms of capacity. Six atoms of carbon are... more read more

Take a ride on the University of Delaware’s Fuel Cell bus, and you see that fuel cells can power vehicles in an eco-friendly way.

In just the last two years, Toyota, Hyundai and Honda have released vehicles that run on fuel cells, and carmakers such as GM, BMW and VW are working on prototypes. If their power sources lasted longer and cost less, fuel cell vehicles could go mainstream faster. Now, a team of engineers at UD has developed a technology that could make fuel cells cheaper and more durable. They describe their results in a paper published in Nature Communications on Monday, Sept. 4. Authors include Weiqing Zheng, a research associate at the Catalysis Center for Energy Innovation; Liang Wang, an associate scientist in the Department of Mechanical Engineering; Fei Deng, a research associate in materials... more read more

Credit: IFJ PAN

The modern world relies on portable electronic devices such as smartphones, tablets, laptops, cameras or camcorders.

Many of these devices are powered by lithium-ion batteries, which could be smaller, lighter, safer and more efficient if the liquid electrolytes they contain were replaced by solids. A promising candidate for a solid-state electrolyte is a new class of materials based on lithium compounds, presented by physicists from Switzerland and Poland. Commercially available lithium-ion batteries consist of two electrodes connected by a liquid electrolyte. This electrolyte makes it difficult for engineers to reduce the size and weight of the battery, in addition, it is subjected to leakage; the lithium in the exposed electrodes then comes into contact with oxygen in the air and undergoes self-ignition... more read more

Saliva-powered battery could be helpful in extreme conditions

Researchers at Binghamton University, State University of New York have developed the next step in microbial fuel cells (MFCs): a battery activated by spit that can be used in extreme conditions where normal batteries don’t function. For the last five years, Binghamton University Electrical and Computer Science Assistant Professor Seokheun Choi has focused on developing micro-power sources for the use in resource-limited regions to power point-of-care (POC) diagnostic biosensors; he has created several paper-based bacteria-powered batteries. "On-demand micro-power generation is required especially for point-of-care diagnostic applications in developing countries," said Choi... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products