MMaterialsgateNEWS 2017/03/15

Related MaterialsgateCARDS

Researchers offer overview of composite metal foams and potential applications

Credit: Afsaneh Rabiei

Researchers at North Carolina State University have developed a range of composite metal foams (CMFs) that can be used in applications from armor to hazardous material transport - and they're now looking for collaborators to help identify and develop new applications.

To that end, the researchers are issuing a comprehensive overview and new data on their CMFs.

"Over the past 12 years, we have published a suite of papers on everything from how to make CMFs to a wide variety of the materials' properties, including how they handle high-speed impacts, radiation and intense heat," says Afsaneh Rabiei, a professor of mechanical and aerospace engineering at NC State and creator of the CMFs.

"The CMFs and their manufacturing processes are patented, but our goal for this paper is to give other researchers a thorough overview of the materials - including previously unpublished data - because we think the material can save lives in a variety of applications," Rabiei says. "We're hopeful that others in the research community may think of additional applications and come to us with ideas that we can collaborate on."

Previous work from Rabiei's group has shown that CMFs, in addition to being lightweight: can reduce armor-piercing bullet penetration; are very effective at shielding X-rays, gamma rays and neutron radiation; and can handle fire and heat twice as well as the plain metals they are made of. Video of the material stopping an armor-piercing bullet can be viewed at https://www.youtube.com/watch?v=lWmFu-_54fI.

The new data in the recent paper relates to previous research; for example, previously unpublished figures on how the material performs in response to high-speed impacts and cyclic loading. The information is useful to researchers, but does not change our understanding of the material's fundamental properties.

Rabiei's team is currently at work on three projects that make use of the CMFs:

* A Department of Defense-funded effort to create vehicle armor that addresses threats from small arms, blasts and fragmentation from explosives;

* A Department of Transportation-funded project to develop storage containers for transporting hazardous materials; and

* A NASA-funded project focused on structural applications for airplanes.

"If others in the research community would like to work together in exploring additional applications, we'd love to talk to them," Rabiei says.

Source: North Carolina State University – 13.03.2017.

The paper, "Overview of Composite Metal Foams and their Properties and Performance," was published online March 13 in the journal Advanced Engineering Materials. The paper was co-authored by Rabiei and Jacob Marx, a Ph.D. student at NC State.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Credit: American Chemical Society

ACS Applied Materials & Interfaces: "Multifunctional Stiff Carbon Foam Derived from Bread"

Sturdy, lightweight carbon foam has many structural and insulating applications in aerospace engineering, energy storage and temperature maintenance. Current methods to create this material run into difficulties when trying to make the product strong, lightweight, environmentally friendly and low-cost. Now, a group reports in ACS Applied Materials & Interfaces a method to produce such a carbon foam by using super-toasted bread. Carbon foams have a 3-D network that allows them to be lightweight, tolerant of high temperatures and adjustable in their thermal and electrical properties. Many different materials, such as graphene sheets — 2-D layers of carbon atoms — and biomass such as... more read more

Lawrence Livermore National Laboratory (LLNL) material scientists have found that 3D-printed foam works better than standard cellular materials in terms of durability and long-term mechanical performance.

Foams, also known as cellular solids, are an important class of materials with applications ranging from thermal insulation and shock-absorbing support cushions to lightweight structural and floatation components. Such material is an essential component in a large number of industries, including automotive, aerospace, electronics, marine, biomedical, packaging and defense. Traditionally, foams are created by processes that lead to a highly non-uniform structure with significant dispersion in size, shape, thickness, connectedness and topology of its constituent cells. As an improved alternative, scientists at the additive manufacturing lab at LLNL recently demonstrated the feasibility of... more read more

A new study from North Carolina State University researchers finds that novel light-weight composite metal foams (CMFs) are significantly more effective at insulating against high heat than the conventional base metals and alloys that they're made of, such as steel.

The finding means the CMF is especially promising for use in storing and transporting nuclear material, hazardous materials, explosives and other heat-sensitive materials, as well as for space exploration. "The presence of air pockets inside CMF make it so effective at blocking heat, mainly because heat travels more slowly through air than through metal," says Afsaneh Rabiei, a professor of mechanical and aerospace engineering at NC State and corresponding author of a paper on the work. The composite metal foam consists of metallic hollow spheres - made of materials such as carbon steel, stainless steel or titanium - embedded in a metallic matrix made of steel, aluminum or metallic... more read more

A team of chemists from ITMO University, in collaboration with research company SOPOT, has developed a novel type of firefighting foam based on inorganic silica nanoparticles.

A team of chemists from ITMO University, in collaboration with research company SOPOT, has developed a novel type of firefighting foam based on inorganic silica nanoparticles. The new foam beats existing analogues in fire extinguishing capacity, thermal and mechanical stability and biocompatibility. The results of the study were published in ACS Advanced Materials & Interfaces. Fighting large-scale fires usually involves firefighting foams based on synthetic substances, such as prefluorinated surfactants, that, despite their effectiveness, are extremely toxic for living organisms. Complete biodegradation of such foams can last for more than 200 years, with residues quickly penetrating... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED