MMaterialsgateNEWS 2016/01/22

Related MaterialsgateCARDS

Pitt researchers developing sponge-like material to more efficiently store natural gas

Although compressed natural gas represents a cleaner and more efficient fuel for vehicles, its volatile nature requires a reinforced, heavy tank that stores the gas at high pressure and therefore limits vehicle design.

Researchers at the University of Pittsburgh's Swanson School of Engineering are utilizing metal-organic frameworks (MOFs) to develop a new type of storage system that would adsorb the gas like a sponge and allow for more energy-efficient storage and use.

The research, "Mechanisms of Heat Transfer in Porous Crystals Containing Adsorbed Gases: Applications to Metal-Organic Frameworks," was published this week in the journal Physical Review Letters by Christopher E. Wilmer, assistant professor of chemical and petroleum engineering, and postdoctoral fellow Hasan Babaei. (DOI: 10.1103/PhysRevLett.116.025902) Traditional CNG tanks are empty structures that require the gas to be stored at high pressure, which affects design and the weight of the vehicle. Dr. Wilmer and his lab are instead focused on porous crystal/gas systems, specifically MOFs, which possess structures with extremely high surface areas.

"One of the biggest challenges in developing an adsorbed natural gas (ANG) storage system is that the process generates significant heat which limits how quickly the tank can be filled," Dr. Wilmer said. "Unfortunately, not a lot is known about how to make adsorbents dissipate heat quickly. This study illuminates some of the fundamental mechanisms involved."

According to Dr. Wilmer, gases have a $500 billion impact on the global economy, but storing, separating, and transporting gas requires energy-intensive compression. His research into MOFs is an extension of his start-up company, NuMat Technologies, which develops MOF-based solutions for the gas storage industry.

"By gaining a better understanding of heat transfer mechanisms at the atomic scale in porous materials, we could develop a more efficient material that would be thermally conductive rather than thermally insulating," he explained. "Beyond natural gas, these insights could help us design better hydrogen gas storage systems as well. Any industrial process where a gas interacts with a porous material, where heat is an important factor, could potentially benefit from this research."

Source: University of Pittsburgh – 20.01.2016.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

International study challenges prevailing view on how metal organic frameworks store gases

An international collaboration of scientists led by Omar Yaghi, a renowned chemist with the Lawrence Berkeley National Laboratory (Berkeley Lab), has developed a technique they dubbed "gas adsorption crystallography" that provides a new way to study the process by which metal-organic frameworks (MOFs) - 3D crystals with extraordinarily large internal surface areas - are able to store immense volumes of gases such a carbon dioxide, hydrogen and methane. This new look at MOFs led to a discovery that holds promise for the improved design of MOFs tailored specifically for carbon capture, or for the use of hydrogen and natural gas (methane) fuels. "Up to this point we have been... more read more

Flexible MOFs expand when methane is pumped in, deflate when methane sucked out

A new and innovative way to store methane could speed the development of natural gas-powered cars that don't require the high pressures or cold temperatures of today's compressed or liquefied natural gas vehicles. Natural gas is cleaner-burning than gasoline, and today there are more than 150,000 compressed natural gas (CNG) vehicles on the road in the U.S., most of them trucks and buses. But until manufacturers can find a way to pack more methane into a tank at lower pressures and temperatures, allowing for a greater driving range and less hassle at the pump, passenger cars are unlikely to adopt natural gas as a fuel. University of California, Berkeley, chemists have now developed... more read more

Metal organic frameworks (MOFs) are proving to be incredibly flexible with a myriad of potential applications including as antimicrobial agents, hydrogen-storage materials and solar-cell components.

And despite their rigid-sounding name, researchers are reporting that MOF structures are also dynamic -- much more so than previously thought. They report this discovery, which could lead to the synthesis of brand-new types of materials, in ACS Central Science. As the name implies, MOFs are composed of networks of organic (carbon-based) compounds interspersed with metal ions. Many different combinations of metals and organic components exist, but much of what we know about these systems comes from a zinc and benzene di-acid framework called MOF-5. For over 15 years, the prevailing view of MOF-5, and all MOFs, has been that they are static. But thanks to a serendipitous finding, Mircea Dinca... more read more

More on this topic:

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED