MMaterialsgateNEWS 2018/05/16

Research examines wing shapes to reduce vortex and wake

It’s common to see line-shaped clouds in the sky, known as contrails, trailing behind the engines of a jet airplane. What’s not always visible is a vortex coming off of the tip of each wing—like two tiny horizontal tornadoes—leaving behind a turbulent wake behind the vehicle.

The wake poses a destabilizing flight hazard, particularly for smaller aircraft that share the same flight path.

Recent research at the University of Illinois demonstrated that, although most wing shapes used today create these turbulent wake vortices, wing geometrics can be designed to reduce or eliminate wingtip vortices almost entirely. In the study, the vortex and wake characteristics were computed for three classic wing designs: the elliptic wing, and wing designs developed in classic studies by R.T. Jones and Ludwig Prandt.

“The elliptic wing configuration has been used as the gold standard of aerodynamic efficiency for the better part of a century. We teach our students that it has the optimal loading characteristics and that it’s often used when looking at wing efficiency for say, minimizing drag,” said Phillip Ansell, assistant professor in the Department of Aerospace Engineering at U of I.

In a previous experimental study on optimizing wing configurations, Ansell learned you can gain efficiency of the wing system with a non-elliptic wing profile. “Previous academic studies have shown that, theoretically, there are other designs that actually provide lower drag of a planar wing for a fixed amount of lift generation. But what has been missing is an actual apples-to-apples experiment to prove it.”

In this new research, Ansell, and his graduate student, Prateek Ranjan, used the real data from the previous study to analyze the three wing configurations.

“We chased this down because we saw something curious in our measurements in the earlier experiment. Consequently, in this new study, we simulated the flow about these three wings and saw significant differences in how the vortices and wakes developed from each of the three wing types. The Jones and the Prandtl wing configurations didn’t have wing-tip vortices like the elliptic wing. They had a much more gradual bulk deformation of the whole wake structure, rather than an immediate coherent roll-up. We now know that we can delay the formation of wake vortex structures, and increase the distance it takes a trailing wake vortex to roll up by about 12 times, making it weaker and less of a hazard to the aircraft entering its wake.”

Ansell said this information can be used to re-tailor how formation flight is viewed between aircraft, or to develop a new an ideal configuration for the lift loading for takeoffs and landings, and subsequently reduce the length of separation between aircraft in the same flight path.

“Trailing wingtip vortices tend to take a long time to go away once they form in the atmosphere. So the time it takes for the vortex to dissipate has to be figured into the takeoff time of the next aircraft going in that same path. The motion of the air produced by these vortices can create a hazard for trailing aircraft, as it can be unpredictable and make for dangerous flight regimes. So using the Jones or Prandtl wings would result in much less turbulent air behind a plane,” Ansell said.

You’d think that Ansell’s conclusion is to use only the Jones or Prandtl wing configurations, but it’s not.

“One of the things that first drew me to the topic of aerodynamics is that the right answer always depends on what your constraints are. If you’re building a tiny unmanned vehicle that will fly at a low speed, you’ll get a different solution for design needs than if you’re building an aircraft that will carry people at high altitudes and high speeds. So technically, you could argue that all three wing types are the best solution. The question is, what are your driving constraints, such as wing span and weight, behind selecting one of them?”

Ansell added that this is a basic research study and not intended to advise a specific aircraft designer or company.

“We are looking at how the wing flow behaves and the information can be used to understand how the roll-up process of vortices is produced. This study allows us to be aware of how the wing configuration affects the trailing vortex formation and wake by studying the extreme bounds of immediate and delayed vortex roll-up processes,” Ansell said.

“Interestingly we identified that one of the worst offenders of creating vortices is indeed the elliptic lift distribution, which is also among the most conventional wing design. It has definitely changed the way I talk about the issue in my classes. Instead of simply referring to the flow patterns produced behind the wing as a pair of ‘wingtip vortices,’ I’ve taken to describe the full wake produced as the trailing vortex system.”

Source: University of Illinois College of Engineering – 14.05.2018.

The paper, “Computational Analysis of Vortex Wakes Without Near-Field Rollup Characteristics,” was co-authored by Prateek Ranjan and Phillip J. Ansell. It appears in the Journal of Aircraft.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

New research from North Carolina State University and the U.S. Army’s Aviation Applied Technology Directorate shows that stainless steel composite metal foam (CMF) can block blast pressure and fragmentation at 5,000 feet per second from high explosive incendiary (HEI) rounds that detonate only 18 inches away.

“In short, we found that steel-CMF offers much more protection than all other existing armor materials while lowering the weight remarkably,” says Afsaneh Rabiei, senior author of a paper on the work and a professor of mechanical and aerospace engineering at NC State. “We can provide as much protection as existing steel armor at a fraction of the weight – or provide much more protection at the same weight. “Many military vehicles use armor made of rolled homogeneous steel, which weighs three times as much as our steel-CMF,” Rabiei says. “Based on tests like these, we believe we can replace that rolled steel with steel-CMF without sacrificing safety, better blocking not only... more read more

Many species of owl are able to hunt in effective silence by suppressing their noise at sound frequencies above 1.6 kilohertz (kHz) - over the range to which human hearing is most sensitive.

A team of researchers studying the acoustics of owl flight - including Justin W. Jaworski, assistant professor of mechanical engineering and mechanics at Lehigh's P.C. Rossin College of Engineering and Applied Science-are working to pinpoint the mechanisms that accomplish this virtual silence to improve man-made aerodynamic design - of wind turbines, aircraft, underwater vehicles and, even, automobiles. Now, the team has succeeded - through physical experiments and theoretical modeling - in using the downy canopy of owl feathers as a model to inspire the design of a 3-D printed, wing attachment that reduces wind turbine noise by a remarkable 10 decibels - without impacting aerodynamics... more read more

When the Wright brothers accomplished their first powered flight more than a century ago, they controlled the motion of their Flyer 1 aircraft using wires and pulleys that bent and twisted the wood-and-canvas wings.

This system was quite different than the separate, hinged flaps and ailerons that have performed those functions on most aircraft ever since. But now, thanks to some high-tech wizardry developed by engineers at MIT and NASA, some aircraft may be returning to their roots, with a new kind of bendable, "morphing" wing. The new wing architecture, which could greatly simplify the manufacturing process and reduce fuel consumption by improving the wing's aerodynamics, as well as improving its agility, is based on a system of tiny, lightweight subunits that could be assembled by a team of small specialized robots, and ultimately could be used to build the entire airframe. The wing... more read more

Someday, cicadas and dragonflies might save your sight. The key to this power lies in their wings, which are coated with a forest of tiny pointed pillars that impale and kill bacterial cells unlucky enough to land on them.

Now, scientists report they have replicated these antibacterial nanopillars on synthetic polymers that are being developed to restore vision. The researchers present their work today at the 251st National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 12,500 presentations on a wide range of science topics. "Other research groups have also created antibacterial nanopillar surfaces, but none of their approaches can be used on ordinary polymer surfaces or be scaled up easily," according to Albert F. Yee, Ph.D., who leads a team working on the topic... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED