MMaterialsgateNEWS 2016/08/08

Related MaterialsgateCARDS

New ceramic membrane enables first direct conversion of natural gas to liquids without CO2

Credit: CoorsTek Membrane Sciences

Engineered ceramic-based conversion approach offers a lower cost, cleaner process for producing a range of chemicals from abundant natural gas.

CoorsTek, the world's leading engineered ceramics manufacturer, today announced that a team of scientists from CoorsTek Membrane Sciences, the University of Oslo (Norway), and the Instituto de Tecnología Química (Spain) has developed a new process to use natural gas as raw material for aromatic chemicals. The process uses a novel ceramic membrane to make the direct, non-oxidative conversion of gas to liquids possible for the first time -- reducing cost, eliminating multiple process steps, and avoiding any carbon dioxide (CO2) emissions. The resulting aromatic precursors are source chemicals for insulation materials, plastics, textiles, and jet fuel, among other valuable products.

Direct activation of methane, the main component of biogas and natural gas, has been a key goal of the hydrocarbon research community for decades. This new process is detailed in the August 5, 2016 edition of Science, in a research paper entitled "Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor".

"Consider the scale of the oil, gas, and petrochemicals industry today", says Dr. Jose Serra, Professor with Instituto de Tecnología Química (ITQ) in Valencia, Spain, a leading research lab for hydrocarbon catalysis and a co-author of the report in Science. "With new ceramic membrane reactors to make fuels and chemicals from natural gas instead of crude oil, the whole hydrocarbon value chain can become significantly less expensive, cleaner, and leaner."

"By using a ceramic membrane that simultaneously removes hydrogen and injects oxygen, we have been able to make liquid hydrocarbons directly from methane in a one-step process. As a bonus, the process also generates a high-purity hydrogen stream as a byproduct," explains Professor Serra. "At a macro level it is really very simple - inexpensive, abundant gas in and valuable liquid out through a clean, inexpensive process. At a nanochemistry level, however, where molecules interact with catalyst and membrane at a temperature around 700 °C, there were many factors to engineer and control in order to render just the specific valuable molecules needed to make the new process work."

Methane constitutes a large fraction of the world's hydrocarbon resource, but much of this resource is stranded without economically viable paths to market. Even when available for industrial conversions, the high stability of the methane molecule leads to energy losses associated with multi-stage processing in large chemical plants which use oxygen or steam to activate the methane in what is known as synthesis gas processing.

Temperature and pressure have historically been the main parameters chemists and engineers can work with to control reactions. Catalysts can improve speed and selectivity, without promoting reactions beyond their chemical equilibrium limit. Integrating a ceramic ion-conducting membrane into the reactor enables an increase in the productivity of industrially appealing processes which are otherwise impractical due to strong thermodynamic constraints.

The ceramic membranes are made from abundant materials like barium and zirconium found within large sand deposits, with the addition of thin electro-catalytic layers of plentiful metals like nickel and copper.

"With high-volume manufacturing, we can make membrane reactors from active ceramics that are cost competitive with conventional catalytic reactors for gas processing," said Per Vestre, Managing Director at CoorsTek Membrane Sciences. "While the reactor costs will be similar, the results enabled by this new process have the potential to significantly improve both the financial and environmental costs of chemical production, a development CoorsTek believes will make the world measurably better."

Source: CoorsTek – 04.08.2016.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

A paperlike battery electrode developed by a Kansas State University engineer may improve tools for space exploration or unmanned aerial vehicles.

Gurpreet Singh, associate professor of mechanical and nuclear engineering, and his research team created the battery electrode using silicon oxycarbide-glass and graphene. The battery electrode has all the right characteristics. It is more than 10 percent lighter than other battery electrodes. It has close to 100 percent cycling efficiency for more than 1000 charge discharge cycles. It is made of low-cost materials that are byproducts of the silicone industry. And it functions at temperatures as low as minus 15 degrees C, which gives it numerous aerial and space applications. The research appears in Nature Communications article "Silicon oxycarbide glass-graphene composite paper electrode... more read more

A team of chemists from ITMO University, in collaboration with research company SOPOT, has developed a novel type of firefighting foam based on inorganic silica nanoparticles.

A team of chemists from ITMO University, in collaboration with research company SOPOT, has developed a novel type of firefighting foam based on inorganic silica nanoparticles. The new foam beats existing analogues in fire extinguishing capacity, thermal and mechanical stability and biocompatibility. The results of the study were published in ACS Advanced Materials & Interfaces. Fighting large-scale fires usually involves firefighting foams based on synthetic substances, such as prefluorinated surfactants, that, despite their effectiveness, are extremely toxic for living organisms. Complete biodegradation of such foams can last for more than 200 years, with residues quickly penetrating... more read more

Credit: SCHOTT

High-performance material for use in saunas, outdoor heaters, industrial drying systems, and stable heating

The international technology group SCHOTT now offers NEXTREMA® glass-ceramic for high-temperature applications. This high-performance material for use in infrared applications is already featured as a component in infrared radiant heaters in the areas of health and wellness, outdoor heating, and industrial drying. Thanks to its six different transmission types, this high-tech glass-ceramic opens up new aesthetic and technical design possibilities for manufacturers. Due to its specific material properties, NEXTREMA® glass-ceramic is well suited for use in infrared heating applications. This high-performance product is known for very high transmittance of infrared radiation in the short... more read more

Researchers at the University of Tokyo have discovered a new type of material which stores heat energy for a prolonged period, which they have termed a “heat storage ceramic.”

This new material can be used as heat storage material for solar heat energy generation systems or efficient use of industrial heat waste, enabling recycling of heat energy, since the material releases the stored heat energy on demand by application of weak pressure. Materials capable of storing heat include those such as bricks or concrete that slowly release the stored heat, and others such as water or ethylene glycol that take in heat when they transform from a solid to a liquid. However, none of these materials can store heat energy over a long period as they naturally release it slowly over time. A material that could store heat energy for a long time and release it at the exact timing... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED