MMaterialsgateNEWS 2015/08/27

Related MaterialsgateCARDS

Medical Engineering: Robotically steered flexible needles navigate in tissue

Robotically steering flexible needles can reach their intended target in tissue with sub-millimetre level accuracy. This has been demonstrated by the doctoral research of Momen Abayazid, who is affiliated with the research institute MIRA of the University of Twente.

An major advantage of steering flexible needles is that one can avoid obstacles or sensitive tissues and can re-orient the path of the needle in real time as you insert the needle. Abayazid will defend his doctoral thesis on 26 August, 2015.

During many diagnostic and therapeutic procedures a needle is inserted into soft tissue, such as during biopsies, or inserting radioactive seeds in order to combat prostate cancer. In many of these operations the accurate positioning of the needle is of the utmost importance. In general, rigid needles with a relatively large diameter are used in these procedures. However, the drawback of these needles is that they cannot be maneuvered when inserted into tissue and hence cannot avoid any obstacles. In addition, the tissue and organs deform during needle insertion. As a result, the needle often misses its target.
Flexible needles with an asymmetric tip

The University of Twente is has developed a robot-assisted system for steering flexible needles with an asymmetric tip. Such a needle naturally bends when inserted into tissue due to its asymmetric tip. By performing a sequence of insertions and rotations, one can steer the needle in complex three-dimensional paths. The needle is controlled by a robot and is tracked in real time using ultrasound images. This ensures that is possible to adjust the needle's path and guide it guide through biological tissue with sub-millimetre level accuracy. Momen Abayazid's doctoral research involved the developed of the robotic test-bed and the control that guides the needle as well as the 3D needle localization algorithm using ultrasound images.
Human-in-the-loop studies

In order to promote the acceptance in clinical practice and to combine the robotic system's accuracy with clinical expertise, Mr. Abayazid also developed a system that allows the clinician to have control. In this version the clincian inserts the needle, while being given guidance and cues by the robotic system with the help of vibrations and visual feedback. Thanks to such a “shared-controlled” system it could be possible in the future to have needle be guided by a clinician who is in a different location than the patient. For example, the researchers have successfully guided the needle located in Enschede, Netherlands from the city of Sienna, Italy.

Finally the developed system has been integrated with an ultrasound-based, automated breast volume scanner (ABVS). By combining the proposed system with a robotic, clinically approved ABVS system it is possible to bring robotic needle guidance from the research lab to the operating room.
Clinical studies in humans

According to thesis supervisor prof. dr Sarthak Misra, Abayazid's research shows that the system is technically ready for application in humans. Misra expects the first clinical trials to begin in three to four years.

Source: University of Twente – 26.08.2015.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Dissolvable material expands opportunities for flexible microneedles used for brain penetrations

Microscale needle-electrode array technology has enhanced brain science and engineering applications, such as electrophysiological studies, drug and chemical delivery systems, and optogenetics. However, one challenge is reducing the tissue/neuron damage associated with needle penetration, particularly for chronic insert experiment and future medical applications. A solution strategy is to use microscale-diameter needles (e.g., < 5 μm) with flexible properties. However, such physically limited needles cannot penetrate the brain and other biological tissues because of needle buckling or fracturing on penetration. A research team in the Department of Electrical and Electronic Information... more read more

With the flick of a tiny mechanical wrist, a team of engineers and doctors at Vanderbilt University's Medical Engineering and Discovery Laboratory hope to give needlescopic surgery a whole new degree of dexterity.

Needlescopic surgery, which uses surgical instruments shrunk to the diameter of a sewing needle, is the ultimate form of minimally invasive surgery. The needle-sized incisions it requires are so small that they can be sealed with surgical tape and usually heal without leaving a scar. Although it's been around since the 1990s, the technique, which is also called mini- or micro-laparoscopy, is so difficult that only a handful of surgeons around the world use it regularly. In addition, it has largely been limited to scraping away diseased tissue with sharp-edged rings called curettes or burning it away with tiny lasers or heated wires. So a research team headed by Associate Professor... more read more

Semiconducting silicon spicules engage tissue like a bee stinger

Researchers have developed a new approach for better integrating medical devices with biological systems. The researchers, led by Bozhi Tian, assistant professor in chemistry at the University of Chicago, have developed the first skeleton-like silicon spicules ever prepared via chemical processes. "Using bone formation as a guide, the Tian group has developed a synthetic material from silicon that shows potential for improving interaction between soft tissue and hard materials," said Joe Akkara, a program director in the National Science Foundation materials research division, which funds this research. "This is the power of basic scientific research. The Tian group has created... more read more

New flexible, silver-impregnated elastic mesh material is perfect for thermotherapy

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle Research, Institute for Basic Science (IBS) in Seoul, along with an international team, have come up with an ingenious way of creating therapeutic heat in a light, flexible design. Other teams have come up with similar devices before, although no one was able to create something that didn’t rely on exotic materials or a complex fabrication process, factors which both carry hefty price tags. Unlike their predecessors, the team at IBS stayed away from things like carbon nanotubes... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED