MMaterialsgateNEWS 2015/12/10

Related MaterialsgateCARDS

Electronics: Nanostructured metal coatings let the light through for electronic devices

Light and electricity dance a complicated tango in devices like LEDs, solar cells and sensors. A new anti-reflection coating developed by engineers at the University of Illinois at Urbana Champaign, in collaboration with researchers at the University of Massachusetts at Lowell, lets light through without hampering the flow of electricity, a step that could increase efficiency in such devices.

The coating is a specially engraved, nanostructured thin film that allows more light through than a flat surface, yet also provides electrical access to the underlying material - a crucial combination for optoelectronics, devices that convert electricity to light or vice versa. The researchers, led by U. of I. electrical and computer engineering professor Daniel Wasserman, published their findings in the journal Advanced Materials.

"The ability to improve both electrical and optical access to a material is an important step towards higher-efficiency optoelectronic devices," said Wasserman, a member of the Micro and Nano Technology Laboratory at Illinois.

At the interface between two materials, such as a semiconductor and air, some light is always reflected, Wasserman said. This limits the efficiency of optoelectronic devices. If light is emitted in a semiconductor, some fraction of this light will never escape the semiconductor material. Alternatively, for a sensor or solar cell, some fraction of light will never make it to the detector to be collected and turned into an electrical signal. Researchers use a model called Fresnel's equations to describe the reflection and transmission at the interface between two materials.

"It has been long known that structuring the surface of a material can increase light transmission," said study co-author Viktor Podolskiy, a professor at the University of Massachusetts at Lowell. "Among such structures, one of the more interesting is similar to structures found in nature, and is referred to as a 'moth-eye' pattern: tiny nanopillars which can 'beat' the Fresnel equations at certain wavelengths and angles."

Although such patterned surfaces aid in light transmission, they hinder electrical transmission, creating a barrier to the underlying electrical material.

"In most cases, the addition of a conducting material to the surface results in absorption and reflection, both of which will degrade device performance," Wasserman said.

The Illinois and Massachusetts team used a patented method of metal-assisted chemical etching, MacEtch, developed at Illinois by Xiuling Li, U. of I. professor of electrical and computer engineering and co-author of the new paper. The researchers used MacEtch to engrave a patterned metal film into a semiconductor to create an array of tiny nanopillars rising above the metal film. The combination of these "moth-eye" nanopillars and the metal film created a partially coated material that outperformed the untreated semiconductor.

"The nanopillars enhance the optical transmission while the metal film offers electrical contact. Remarkably, we can improve our optical transmission and electrical access simultaneously," said Runyu Liu, a graduate researcher at Illinois and a co-lead author of the work along with Illinois graduate researcher Xiang Zhao and Massachusetts graduate researcher Christopher Roberts.

The researchers demonstrated that their technique, which results in metal covering roughly half of the surface, can transmit about 90 percent of light to or from the surface. For comparison, the bare, unpatterned surface with no metal can only transmit 70 percent of the light and has no electrical contact.

The researchers also demonstrated their ability to tune the material's optical properties by adjusting the metal film's dimensions and how deeply it etches into the semiconductor.

"We are looking to integrate these nanostructured films with optoelectronic devices to demonstrate that we can simultaneously improve both the optical and electronic properties of devices operating at wavelengths from the visible all the way to the far infrared," Wasserman said.

Source: University of Illinois at Urbana-Champaign – 09.12.2015.

The paper "Enhanced Optical Transmission Through MacEtch-Fabricated Buried Metal Gratings" is available online at http://onlinelibrary.wiley.com/doi/10.1002/adma.201505111/full.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Americans, on average, replace their mobile phones every 22 months, junking more than 150 million phones a year in the process.

When it comes to recycling and processing all of this electronic waste, the World Health Organization reports that even low exposure to the electronic elements can cause significant health risks. Now, University of Missouri researchers are on the path to creating biodegradable electronics by using organic components in screen displays. The researchers' advancements could one day help reduce electronic waste in the world's landfills. "Current mobile phones and electronics are not biodegradable and create significant waste when they're disposed," said Suchismita Guha, professor in the Department of Physics and Astronomy at the MU College of Arts and Science. "This... more read more

Using microfluidic passages cut directly into the backsides of production field-programmable gate array (FPGA) devices, Georgia Institute of Technology researchers are putting liquid cooling right where it's needed the most - a few hundred microns away from where the transistors are operating.

Combined with connection technology that operates through structures in the cooling passages, the new technologies could allow development of denser and more powerful integrated electronic systems that would no longer require heat sinks or cooling fans on top of the integrated circuits. Working with popular 28-nanometer FPGA devices made by Altera Corp., the researchers have demonstrated a monolithically-cooled chip that can operate at temperatures more than 60 percent below those of similar air-cooled chips. In addition to more processing power, the lower temperatures can mean longer device life and less current leakage. The cooling comes from simple de-ionized water flowing through microfluidic... more read more

A new world of flexible, bendable, even stretchable electronics is emerging from research labs to address a wide range of potentially game-changing uses.

The common, rigid printed circuit board is slowly being replaced by a thin ribbon of resilient, high-performance electronics. Over the last few years, one team of chemists and materials scientists has begun exploring military applications in harsh environments for aircraft, explosive devices and even combatants themselves. Researchers will provide an update on the latest technologies, as well as future research plans, at the 250th National Meeting & Exposition of the American Chemical Society (ACS). ACS is the world's largest scientific society. The meeting takes place here through Thursday. "Basically, we are using a hybrid technology that mixes traditional electronics with... more read more

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological applications.

However, on their own, these materials are terrible for use in the electronics world. As a conductor, graphene lets electrons zip too fast--there's no controlling or stopping them--while boron nitride nanotubes are so insulating that electrons are rebuffed like an overeager dog hitting the patio door. But together, these two materials make a workable digital switch, which is the basis for controlling electrons in computers, phones, medical equipment and other electronics. Yoke Khin Yap, a professor of physics at Michigan Technological University, has worked with a research team that created these digital switches by combining graphene and boron nitride nanotubes. The journal Scientific... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED