MMaterialsgateNEWS 2017/03/09

Related MaterialsgateCARDS

Electronics: Reducing conducting thin film surface roughness for electronics

In a significant advance, particularly within the microelectronics realm, University of Massachusetts Amherst engineers have established electrical surface treatment of conducting thin films as a physical processing method to reduce surface roughness

Surface roughness reduction is a really big deal when it comes to fundamental surface physics and while fabricating electronic and optical devices. As transistor dimensions within integrated circuits continue to shrink, smooth metallic lines are required to interconnect these devices. If the surfaces of these tiny metal lines aren't smooth enough, it substantially reduces their ability to conduct electrical and thermal energy -- decreasing functionality.

A group of engineers at the University of Massachusetts Amherst are now reporting an advance this week in Applied Physics Letters, from AIP Publishing, in the form of modeling results that establish electrical surface treatment of conducting thin films as a physical processing method for reducing surface roughness.

"We've been thinking hard about this roughness problem for many years, since showing that electric currents can be used to inhibit surface cracking," said Dimitrios Maroudas, co-author and a professor in the Department of Chemical Engineering. "So as soon as we developed the computational tools to attack the full film roughness problem, we got to work."

The group's work focused on using a copper film on a silicon nitride layer to quantify the model parameters for their simulations and make comparisons with available experimental findings, which they were able to reproduce.

"Surface electromigration is the key physical concept involved," Maroudas explained. "It's the directed transport of atoms on the metal surface due to the so-called electron wind force, which expresses the transfer of momentum from the electrons of the metal moving under the action of an electric field to the atoms (ions) -- biasing atomic migration."

Think of it as akin to the diffusion of ink in flowing water. "Electromigration's role in the transport of surface atoms is analogous to that of convection due to flow on the transport of ink within the water," Maroudas said. "The combined effects of a well-controlled applied electric field and rough surface geometry drive the atoms on the metal surface to move from the hills of the rough surface morphology to the neighboring valleys, which eventually smooth away the rough surfaces."

This work is significant, particularly within the microelectronics realm, because it establishes the electrical treatment of metallic (conducting) films as a viable physical processing strategy for reducing their surface roughness.

"Our approach is qualitatively different than traditional mechanical polishing or ion-beam irradiation techniques," said Lin Du, co-author and a doctoral student working with Maroudas. "It directly influences the driven diffusion of surface atoms precisely, which affects surface atomic motion and enables a smooth surface all the way down to the atomic level."

The required electric field action can be conveniently controlled macroscopically: simply choose a direction, adjust the voltage, and flip a switch "on."

"While studying the phenomenon, we discovered that a sufficiently strong electric field can bring the metallic surface to an atomically smooth state," Du said. "The required electric field strength depends largely on the field direction and surface material properties of the metallic film -- such as film texture and surface diffusional anisotropy, because in surfaces of crystalline materials diffusion is faster along certain preferred directions."

A true irony here is that "electromigration is best known for its damaging effects within metallic interconnects -- underlying crucial materials reliability problems in many generations of microelectronics," Maroudas said.

As far as applications, since this work establishes the principles to create smoother conducting material surfaces, "it can be used for fabricating and processing nanoscale-thick metallic components within electronic and optical devices, which require atomic-scale smoothness," Maroudas said. "The ability to reduce the surface roughness of metallic components, such as interconnects within integrated circuits, will significantly improve their performance as well as durability and reliability."

What's the next step for the engineers? "We're currently exploring how the effectiveness of the method depends on the metallic film texture (or surface crystallographic orientation), the film's wetting of the substrate, and the electric field direction with respect to certain surface crystallographic directions," Maroudas said.

The group's immediate goal is "to optimize the electrical treatment technique, and to identify the conditions for minimizing the required electric field strength, as well as the cost of applying this technique," he added. "Our next natural step should be a partnership with an experimental laboratory with the proper expertise to carry out tests that will help us move from proof of concept to an enabling technology."

Source: American Institute of Physics – 07.03.2017.

The article, "Current-induced surface roughness reduction in conducting thin films," is authored by Lin Du and Dimitrios Maroudas. The article will appear in the journal Applied Physics Letters March 7, 2017 (DOI: 10.1063/1.4977024). After that date, it can be accessed at

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

A new technique using liquid metals to create integrated circuits that are just atoms thick could lead to the next big advance for electronics.

The process opens the way for the production of large wafers around 1.5 nanometres in depth (a sheet of paper, by comparison, is 100,000nm thick). Other techniques have proven unreliable in terms of quality, difficult to scale up and function only at very high temperatures -- 550 degrees or more. Distinguished Professor Kourosh Kalantar-zadeh, from the School of Engineering at RMIT University in Melbourne, Australia, led the project, which also included colleagues from RMIT and researchers from CSIRO, Monash University, North Carolina State University and the University of California. He said the electronics industry had hit a barrier. "The fundamental technology of car engines... more read more

Engineering researchers at Michigan State University have developed the first stretchable integrated circuit that is made entirely using an inkjet printer, raising the possibility of inexpensive mass production of smart fabric.

Imagine: an ultrathin smart tablet that can be stretched easily from mini-size to extra large. Or a rubber band-like wrist monitor that measures one's heartbeat. Or wallpaper that turns an entire wall into an electronic display. These are some of the potential applications of the stretchable smart fabric developed in the lab of Chuan Wang, assistant professor of electrical and computer engineering. And because the material can be produced on a standard printer, it has a major potential cost advantage over current technologies that are expensive to manufacture. "We can conceivably make the costs of producing flexible electronics comparable to the costs of printing newspapers... more read more

Molybdenum disulfide (MoS2), which is ubiquitously used as a solid lubricant, has recently been shown to have a two-dimensional (2D) form that is similar to graphene.

But, when thinned down to less than a nanometer thick, MoS2 demonstrates properties with great promise as a functional material for electronic devices and surface coatings. Researchers at the University of Illinois at Urbana-Champaign have developed a new approach to dynamically tune the micro- and nano-scale roughness of atomically thin MoS2, and consequently the appropriate degree of hydrophobicity for various potential MoS2-based applications. "The knowledge of how new materials interact with water is a fundamental," explained SungWoo Nam, an assistant professor of mechanical science and engineering at Illinois. "Whereas the wettability of its more famous cousin, graphene... more read more

New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices

Semiconductors, which are the very basic components of electronic devices, have improved our lives in many ways. They can be found in lighting, displays, solar modules and microprocessors that are installed in almost all modern day devices, from mobile phones, washing machines, and cars, to the emerging Internet of Things. To innovate devices with better functionality and energy efficiency, researchers are constantly looking for better ways to make them, in particular from earth-abundant materials using eco-friendly processes. Plastic or organic electronics, which is made from organic carbon-based semiconductors, is one such group of technologies that can potentially provide flexible, light... more read more


Partner of the Week

Search in MaterialsgateNEWS

Books and products