Benefits for exhibitors

Targeted: The MaterialsgateFAIR presents your materials 24/7 at the user´s fingertips

Efficient: Qualified B2B enquiries support your sales department with minimum effort

Clever: MaterialsgateFAIR provides highly measurable results at low costs

How? Contact us, we will develop your tailor-made presentation!

MMaterialsgateFAIR - 100% Material transfer

The Materialsgate Online Fair and Experts Platform

Simply Clever: Would you like to learn more about the competencies of our exhibitors? Then just click on the exhibits!

Focus Areas:
All
Metals
Plastics
Composites
Ceramics
Coatings
Glasses
Natural Products

MMaterialsgateNEWS - Information & Innovation

Credit: Eastman Chemical Co./ K. Irvine, NIST

Know that sickening feeling when you exit the grocery store and find your car has been banged up by a runaway shopping cart?

It may one day be just a bad memory if auto body manufacturers make use of a new suite of tests developed by the National Institute of Standards and Technology (NIST) and three industry partners. Data from these tests could eventually help your vehicle’s exterior better defend itself against dings, dents, scratches and things that go bump on the highway. In a new paper in the journal Progress in Organic Coatings, researchers at four organizations—NIST and industry partners Eastman Chemical Co., the Hyundai America Technical Center and Anton Paar USA—describe three versions of a fast, reliable laboratory method for simulating scratching processes on automobile clearcoats (the uppermost... more read more

Credit: KAIST

Robots will be able to conduct a wide variety of tasks as well as humans if they can be given tactile sensing capabilities.

A KAIST research team has reported a stretchable pressure insensitive strain sensor by using an all solution-based process. The solution-based process is easily scalable to accommodate for large areas and can be coated as a thin-film on 3-dimensional irregularly shaped objects via spray coating. These conditions make their processing technique unique and highly suitable for robotic electronic skin or wearable electronic applications. The making of electronic skin to mimic the tactile sensing properties of human skin is an active area of research for various applications such as wearable electronics, robotics, and prosthetics. One of the major challenges in electronic skin research is differentiating... more read more

Researchers have designed a rapid nano-filter that can clean dirty water over 100 times faster than current technology.

Simple to make and simple to scale up, the technology harnesses naturally occurring nano-structures that grow on liquid metals. The RMIT University and the University of New South Wales (UNSW) researchers behind the innovation have shown it can filter both heavy metals and oils from water at extraordinary speed. RMIT researcher Dr Ali Zavabeti said water contamination remains a significant challenge globally - 1 in 9 people have no clean water close to home. “Heavy metal contamination causes serious health problems and children are particularly vulnerable,” Zavabeti said. “Our new nano-filter is sustainable, environmentally-friendly, scalable and low cost. “We’ve shown... more read more

A new material developed by CU Boulder engineers can transform into complex, pre-programmed shapes via light and temperature stimuli, allowing a literal square peg to morph and fit into a round hole before fully reverting to its original form.

The controllable shape-shifting material, described today in the journal Science Advances, could have broad applications for manufacturing, robotics, biomedical devices and artificial muscles. “The ability to form materials that can repeatedly oscillate back and forth between two independent shapes by exposing them to light will open up a wide range of new applications and approaches to areas such as additive manufacturing, robotics and biomaterials”, said Christopher Bowman, senior author of the new study and a Distinguished Professor in CU Boulder’s Department of Chemical and Biological Engineering (CHBE). Previous efforts have used a variety of physical mechanisms to alter an... more read more

Researchers from Virginia Tech and Lawrence Livermore National Laboratory have developed a novel way to 3D print complex objects of one of the highest-performing materials used in the battery and aerospace industries.

Previously, researchers could only print this material, known as graphene, in 2D sheets or basic structures. But Virginia Tech engineers have now collaborated on a project that allows them to 3D print graphene objects at a resolution an order of magnitude greater than ever before printed, which unlocks the ability to theoretically create any size or shape of graphene. Because of its strength - graphene is one of the strongest materials ever tested on Earth - and its high thermal and electricity conductivity, 3D printed graphene objects would be highly coveted in certain industries, including batteries, aerospace, separation, heat management, sensors, and catalysis. Graphene is a single... more read more

More on this topic:

If you’re ever unlucky enough to have a car with metal tires, you might consider a set made from a new alloy engineered at Sandia National Laboratories. You could skid — not drive, skid — around the Earth’s equator 500 times before wearing out the tread.

Sandia’s materials science team has engineered a platinum-gold alloy believed to be the most wear-resistant metal in the world. It’s 100 times more durable than high-strength steel, making it the first alloy, or combination of metals, in the same class as diamond and sapphire, nature’s most wear-resistant materials. Sandia’s team recently reported their findings in Advanced Materials. “We showed there’s a fundamental change you can make to some alloys that will impart this tremendous increase in performance over a broad range of real, practical metals,” said materials scientist Nic Argibay, an author on the paper. Although metals are typically thought of as strong, when they... more read more

Credit: Ran Zhang

New program allows novice users to create durable injection molds | Work to be presented at top conference SIGGRAPH 2018

Most of the plastic objects we see are created using injection molding, but designing such molds is a difficult task, usually requiring experts. Now, computer scientists from the Institute of Science and Technology Austria (IST Austria), the University of Tokyo, and CONICET have created an interactive design tool that allows non-experts to create molds for an object of their choice. The software will be presented at this year’s prestigious SIGGRAPH conference, one of IST Austria’s five successful submissions. Molding is a popular method for the mass production of objects. Essentially, two (or more) mold pieces are fit together, leaving the shape of the desired object as a hole. During... more read more

New research from Virginia Tech aims to cut down on food waste – and consumer frustration – with a novel approach to creating super slippery industrial packaging.

Almost everyone who eats fast food is familiar with the frustration of trying to squeeze every last drop of ketchup out of the small packets that accompany french fries. What most consumers don't realize, however, is that food left behind in plastic packaging is not simply a nuisance. It also contributes to the millions of pounds of perfectly edible food that Americans throw out every year. These small, incremental amounts of sticky foods like condiments, dairy products, beverages, and some meat products that remain trapped in their packaging can add up to big numbers over time, even for a single household. New research from Virginia Tech aims to cut down on that waste – and consumer... more read more

Credit: Yong Zhu

Researchers from North Carolina State University have developed a new technique to control self-folding three-dimensional (3-D) structures. Specifically, the researchers use templates to constrain deformation in certain selected areas on a two-dimensional structure, which in turn dictates the resulting 3-D structure of the material.

The new technique does not rely on cutting or printing on the material, as most other self-folding origami techniques do. It is also different from continuous shape morphing, which is typically controlled by engineering the in-plane strain at various parts of the material. Instead, the researchers applied paperboard sheets to a polymer substrate, forming specific patterns. “When heat is applied to the polymer, it shrinks,” says Yong Zhu, a professor of mechanical and aerospace engineering at NC State and corresponding author of a paper on the work. “However, the sections of polymer that are attached to the paperboard are restrained from shrinking, causing the overall substrate to bend... more read more

Credit: Liz Do

Many foods produced on an industrial scale include raw ingredients mixed together in enormous stainless steel machines that can be difficult to clean.

With repeated use, equipment surfaces get minute scratches and grooves, providing bacteria and biofilms the perfect place to hide. While surface scratches may appear small to the naked eye, they are like a canyon to bacteria, which are only a few micrometers in size. Surface-trapped food residue and bacteria then increase the risk of contamination from microorganisms such as Salmonella, Listeria and E. coli. Professor Ben Hatton (MSE), Dr. Dalal Asker and Dr. Tarek Awad research cheaper, safer and more effective ways to prevent bacteria thriving inside these machines. This minimizes the risk of cross contamination, which can lead to foodborne disease. Their team have proposed a simple new... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Books and products

Materialsgate Partners