Benefits for exhibitors

Targeted: The MaterialsgateFAIR presents your materials 24/7 at the user´s fingertips

Efficient: Qualified B2B enquiries support your sales department with minimum effort

Clever: MaterialsgateFAIR provides highly measurable results at low costs

How? Contact us, we will develop your tailor-made presentation!

MMaterialsgateFAIR - 100% Material transfer

The Materialsgate Online Fair and Experts Platform

Simply Clever: Would you like to learn more about the competencies of our exhibitors? Then just click on the exhibits!

Focus Areas:
All
Metals
Plastics
Composites
Ceramics
Coatings
Glasses
Natural Products

MMaterialsgateNEWS - Information & Innovation

Credit: IBS

IBS physicists found that to shed light on the cracking of MoS2, we must go beyond the theory used so far

Cracks sank the 'unsinkable' Titanic; decrease the performance of touchscreens and erode teeth. We are familiar with cracks in big or small three-dimensional (3D) objects, but how do thin two-dimensional (2D) materials crack? 2D materials, like molybdenum disulfide (MoS2), have emerged as an important asset for future electronic and photoelectric devices. However, the mechanical properties of 2D materials are expected to differ greatly from 3D materials. Scientists at the Center for Integrated Nanostructure Physics (CINAP), within the Institute for Basic Science (IBS) published, on Nature Communications, the first observation of 2D MoS2 cracking at the atomic level. This study is... more read more

In a new study, researchers at the University of California San Diego investigate why hair is incredibly strong and resistant to breaking.

The findings could lead to the development of new materials for body armor and help cosmetic manufacturers create better hair care products. Hair has a strength to weight ratio comparable to steel. It can be stretched up to one and a half times its original length before breaking. "We wanted to understand the mechanism behind this extraordinary property," said Yang (Daniel) Yu, a nanoengineering Ph.D. student at UC San Diego and the first author of the study. "Nature creates a variety of interesting materials and architectures in very ingenious ways. We're interested in understanding the correlation between the structure and the properties of biological materials to... more read more

Credit: Kyoto University/Noda Lab

Kyoto University and Osaka Gas effort doubles current efficiencies

Solar cells convert light into electricity. While the sun is one source of light, the burning of natural resources like oil and natural gas can also be harnessed. However, solar cells do not convert all light to power equally, which has inspired a joint industry-academia effort to develop a potentially game-changing solution. "Current solar cells are not good at converting visible light to electrical power. The best efficiency is only around 20%," explains Kyoto University's Takashi Asano, who uses optical technologies to improve energy production. Higher temperatures emit light at shorter wavelengths, which is why the flame of a gas burner will shift from red to blue... more read more

Based on a study of the optical properties of novel ultrathin semiconductors, researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a method for rapid and efficient characterization of these materials.

Chemical compounds based on elements that belong to the so-called transition metals can be processed to yield atomically thin two-dimensional crystals consisting of a monolayer of the composite in question. The resulting materials are semiconductors with surprising optical properties. In cooperation with American colleagues, a team of LMU physicists led by Alexander Högele has now explored the properties of thin-film semiconductors made up of transition metal dichalcogenides (TMDs). The researchers report their findings in the journal Nature Nanotechnology. These semiconductors exhibit remarkably strong interaction with light and therefore have great potential for applications in the field... more read more

Credit: Seah Zong Long

New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices

Semiconductors, which are the very basic components of electronic devices, have improved our lives in many ways. They can be found in lighting, displays, solar modules and microprocessors that are installed in almost all modern day devices, from mobile phones, washing machines, and cars, to the emerging Internet of Things. To innovate devices with better functionality and energy efficiency, researchers are constantly looking for better ways to make them, in particular from earth-abundant materials using eco-friendly processes. Plastic or organic electronics, which is made from organic carbon-based semiconductors, is one such group of technologies that can potentially provide flexible, light... more read more

Credit: WSU

Washington State University researchers have developed a soy-based air filter that can capture toxic chemicals, such as carbon monoxide and formaldehyde, which current air filters can't.

The research could lead to better air purifiers, particularly in regions of the world that suffer from very poor air quality. The engineers have designed and tested the materials for the bio-based filter and report on their work in the journal Composites Science and Technology. Working with researchers from the University of Science and Technology Beijing, the WSU team, including Weihong (Katie) Zhong, professor in the School of Mechanical and Materials Engineering, and graduate student Hamid Souzandeh, used a pure soy protein along with bacterial cellulose for an all-natural, biodegradable, inexpensive air filter. Hazardous gases escape most filters Poor air quality causes health problems... more read more

Credit: Douglas Levere

A father and son team in the START-UP NY program have invented a liquid metal printing machine that could represent a significant transformation in manufacturing.

A breakthrough idea five years ago by former University at Buffalo student Zack Vader, then 19, has created a machine that prints three-dimensional objects using liquid metal. Vader Systems is innovating and building the machines in a factory in the CrossPoint Business Park in Getzville. Zack’s father Scott, a mechanical engineer, is the CEO. Zack is the chief technology officer. His mother, Pat Roche, is controller. The machine is so novel it represents a quantum leap in the ability to print three-dimensional objects in metal. Other metal printers exist, but most use a process of laying down powered metal and melting it with a laser or electron beam. In that process, some particles... more read more

Researchers at the University of Bath suggest developments in 3D printing techniques could open the door to the advancement of membrane capabilities.

This work is part of the University's Centre for Advanced Separations Engineering (CASE) and is the first time the properties of different 3D printing techniques available to membrane fabrication have been assessed. Membranes are a semi-permeable selective barrier that separate the molecules in a mixture within a gas or liquid into two streams, a key example of this being the separation of salt from water for desalination using reverse osmosis membranes. 3D printing, otherwise known as Additive Manufacturing, has the ability to create almost any geometrically complex shape or feature in a range of materials across different scales. It has applications in various areas including medicine... more read more

Credit: Courtesy of Nano Letters

Measurement shows potential for building better solar cells by imaging fundamental properties of the material

Solar cells made with films mimicking the structure of the mineral perovskite are the focus of worldwide research. But only now have researchers at Case Western Reserve University directly shown the films bear a key property allowing them to efficiently convert sunlight into electricity. Identifying that attribute could lead to more efficient solar panels. Electrons generated when light strikes the film are unrestricted by grain boundaries -- the edges of crystalline subunits within the film -- and travel long distances without deteriorating, the researchers showed. That means electric charge carriers that become trapped and decay in other materials are instead available to be drawn off... more read more

Credit: Joh. Sprinz GmbH & Co. KG

Expressive 3D effects in a complex system - easy to design and easy to install.

SPRINZ, the glass specialist, presents its latest mounting system at imm Cologne 2017. ETTLIN LED fabric integrated in the laminated glass and light-emitting diodes implanted in the mounting system generate a three-dimensional effect. This combined system is easy to design and after all installer-friendly. High quality aluminum profiles, a set of LEDs, a rear panel and laminated glass with integrated fabric could be installed reversibly. With the maximum size of glass of 2.4 x 1 m the system is offered with LED stripes as a standard. Color programming will be set up on the client’s demand. The mounting system is considered to be used as a decorative element for a kitchen backsplash... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Books and products

Materialsgate Partners