Benefits for exhibitors

Targeted: The MaterialsgateFAIR presents your materials 24/7 at the user´s fingertips

Efficient: Qualified B2B enquiries support your sales department with minimum effort

Clever: MaterialsgateFAIR provides highly measurable results at low costs

How? Contact us, we will develop your tailor-made presentation!

MMaterialsgateFAIR - 100% Material transfer

The Materialsgate Online Fair and Experts Platform

Simply Clever: Would you like to learn more about the competencies of our exhibitors? Then just click on the exhibits!

Focus Areas:
All
Metals
Plastics
Composites
Ceramics
Coatings
Glasses
Natural Products

MMaterialsgateNEWS - Information & Innovation

Credit: Pelin Tozman, AMBER and CRANN Institute, Trinity College, Dublin, Ireland

Material scientists have predicted and built two new magnetic materials, atom-by-atom, using high-throughput computational models. The success marks a new era for the large-scale design of new magnetic materials at unprecedented speed.

Although magnets abound in everyday life, they are actually rarities -- only about five percent of known inorganic compounds show even a hint of magnetism. And of those, just a few dozen are useful in real-world applications because of variability in properties such as effective temperature range and magnetic permanence. The relative scarcity of these materials can make them expensive or difficult to obtain, leading many to search for new options given how important magnets are in applications ranging from motors to magnetic resonance imaging (MRI) machines. The traditional process involves little more than trial and error, as researchers produce different molecular structures in hopes of... more read more

Credit: Penn State

A new method to improve semiconductor fiber optics may lead to a material structure that might one day revolutionize the global transmission of data, according to an interdisciplinary team of researchers.

Researchers are working with semiconductor optical fibers, which hold significant advantages over silica-based fiber optics, the current technology used for transmitting nearly all digital data. Silica -- glass -- fibers can only transmit electronic data converted to light data. This requires external electronic devices that are expensive and consume enormous amounts of electricity. Semiconductor fibers, however, can transmit both light and electronic data and might also be able to complete the conversion from electrical to optical data on the fly during transmission, improving delivery speed. Think of these conversions as exit ramps on the information superhighway, said Venkatraman Gopalan... more read more

Credit: Osaka University

Polytetrafluoroethylene (PTFE), or Telfon® as it is better known, is used in a variety of daily products, from cookware to carpets, because of its non-sticky property.

However, this very same non-stickiness has limited its application to other fields including medicine. Scientists at the Osaka University Graduate School of Engineering in collaboration with Hyogo Prefectural Institute of Technology have reported how heat-assisted plasma treatment can modify PTFE to solve this problem. The report can be seen in RSC Advances Kazuya Yamamura, associate professor and Yuji Ohkubo, assistant professor at Osaka University, who first authored the study, note a need for better lubricants in medical procedures. Many people do not give it much thought, but "the rubber in syringes has to be stable and non-sticky to give accurate amounts of a medical agent,"... more read more

When humans begin to colonize the moon and Mars, they will need to be able to make everything from small tools to large buildings using the limited surrounding resources.

Northwestern University's Ramille Shah and her Tissue Engineering and Additive Manufacturing (TEAM) Laboratory have demonstrated the ability to 3D-print structures with simulants of Martian and lunar dust. This work uses an extension of their "3D-painting process," a term that Shah and her team use for their novel 3D inks and printing method, which they previously employed to print hyperelastic "bone", 3D graphene and carbon nanotubes, and metals and alloys. "For places like other planets and moons, where resources are limited, people would need to use what is available on that planet in order to live," said Shah, assistant professor of materials science... more read more

Credit: Rob Felt

A team of researchers from Georgia Institute of Technology and two other institutions has developed a new 3-D printing method to create objects that can permanently transform into a range of different shapes in response to heat.

The team, which included researchers from the Singapore University of Technology and Design (SUTD) and Xi’an Jiaotong University in China, created the objects by printing layers of shape memory polymers with each layer designed to respond differently when exposed to heat. “This new approach significantly simplifies and increases the potential of 4-D printing by incorporating the mechanical programming post-processing step directly into the 3-D printing process,” said Jerry Qi, a professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech. “This allows high-resolution 3-D printed components to be designed by computer simulation, 3-D printed, and then directly... more read more

Credit: American Chemical Society

Despite the many advances in portable electronic devices, one thing remains constant: the need to plug them into a wall socket to recharge.

Now researchers, reporting in the journal ACS Nano, have developed a light-weight, paper-based device inspired by the Chinese and Japanese arts of paper-cutting that can harvest and store energy from body movements. Portable electronic devices, such as watches, hearing aids and heart monitors, often require only a little energy. They usually get that power from conventional rechargeable batteries. But Zhong Lin Wang, Chenguo Hu and colleagues wanted to see if they could untether our small energy needs from the wall socket by harvesting energy from a user's body movements. Wang and others have been working on this approach in recent years, creating triboelectric nanogenerators (TENGs... more read more

Credit: AMBER, Trinity College Dublin

Leading innovation could transform everyday products (like your milk carton) into intelligent smart devices

Researchers in AMBER, the Science Foundation Ireland-funded materials science research centre hosted in Trinity College Dublin, have fabricated printed transistors consisting entirely of 2-dimensional nanomaterials for the first time. These 2D materials combine exciting electronic properties with the potential for low-cost production. This breakthrough could unlock the potential for applications such as food packaging that displays a digital countdown to warn you of spoiling, wine labels that alert you when your white wine is at its optimum temperature, or even a window pane that shows the day's forecast. The AMBER team's findings have been published today in the leading journal... more read more

Credit: Sandia National Laboratories/Randy Montoya

Normally, bare metal sliding against bare metal is not a good thing. Friction will destroy pistons in an engine, for example, without lubrication.

Sometimes, however, functions require metal on metal contact, such as in headphone jacks or electrical systems in wind turbines. Still, friction causes wear and wear destroys performance, and it's been difficult to predict when that will happen. Until now. Sandia National Laboratories materials scientists Nicolas Argibay and Michael Chandross and colleagues developed a model to predict the limits of friction behavior of metals based on materials properties -- how hard you can push on materials or how much current you can put through them before they stop working properly. They've presented their results at invited talks, most recently the 2016 Gordon Research Conference on Tribology... more read more

The project received support from the Regional Science Foundation and the Russian Foundation for Basic Research in the competition for oriented interdisciplinary research in 2016.

The results of the research were published in the journals "Physics of the Solid State", "Vacuum" and "Journal of Superconductivity and Novel Magnetism". The authors of the project say that with the help of this technology special nanopowders are produced, which are used as modifying additives in the production of aluminum alloys. This method will significantly improve the operational properties of the foundry products, and reduce the energy costs for its final processing. Igor Karpov, head of the laboratories of the UNESCO Science and Education Center "New Materials and Technologies" of SibFU, says that aluminum and iron obtained using the technology... more read more

Credit: North Carolina State University

Researchers from North Carolina State University have created elastic, touch-sensitive fibers that can interface with electronic devices.

"Touch is a common way to interact with electronics using keyboards and touch screens," says Michael Dickey, a professor of chemical and biomolecular engineering at NC State and corresponding author of a paper describing the work. "We have created soft and stretchable fibers that can detect touch, as well as strain and twisting. These microscopic fibers may be useful for integrating electronics in new places, including wearable devices." The new fibers are made of tube-like polymer strands that contain a liquid metal alloy, eutectic gallium and indium (EGaIn). The strands are only a few hundred microns in diameter, which is slightly thicker than a human hair. Each fiber... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Books and products

Materialsgate Partners