Benefits for exhibitors

Targeted: The MaterialsgateFAIR presents your materials 24/7 at the user´s fingertips

Efficient: Qualified B2B enquiries support your sales department with minimum effort

Clever: MaterialsgateFAIR provides highly measurable results at low costs

How? Contact us, we will develop your tailor-made presentation!

MMaterialsgateFAIR - 100% Material transfer

The Materialsgate Online Fair and Experts Platform

Simply Clever: Would you like to learn more about the competencies of our exhibitors? Then just click on the exhibits!

Focus Areas:
Natural Products

MMaterialsgateNEWS - Information & Innovation

Credit: James Rondinelli

Finding new functional materials is always tricky. But searching for very specific properties among a relatively small family of known materials is even more difficult.

But a team from Northwestern Engineering and Los Alamos National Laboratory found a workaround. The group developed a novel workflow combining machine learning and density functional theory calculations to create design guidelines for new materials that exhibit useful electronic properties, such as ferroelectricity and piezoelectricity. Few layered materials have these qualities in certain geometries -- crucial for developing solutions to electronics, communication, and energy problems -- meaning there was very little data from which to formulate the guidelines using traditional research approaches. "When others look for new materials, typically they look in places where they have... more read more

A new automated system detects cracks in the steel components of nuclear power plants and has been shown to be more accurate than other automated systems.

"Periodic inspection of the components of nuclear power plants is important to avoid accidents and ensure safe operation," said Mohammad R. Jahanshahi, an assistant professor in Purdue University's Lyles School of Civil Engineering. "However, current inspection practices are time consuming, tedious and subjective because they involve an operator manually locating cracks in metallic surfaces." Other automatic crack detection algorithms under development often do not detect cracks in metallic surfaces because the cracks are usually small, have low contrast and are difficult to distinguish from welds, scratches and grind marks. The new system, called CRAQ, for crack... more read more

Credit: Kevin Soobrian

New University of Toronto Engineering research removes a key barrier to large-scale manufacture of low-cost, printable perovskite solar cells

A U of T Engineering innovation could make printing solar cells as easy and inexpensive as printing a newspaper. Dr. Hairen Tan and his team have cleared a critical manufacturing hurdle in the development of a relatively new class of solar devices called perovskite solar cells. This alternative solar technology could lead to low-cost, printable solar panels capable of turning nearly any surface into a power generator. "Economies of scale have greatly reduced the cost of silicon manufacturing," said Professor Ted Sargent, an expert in emerging solar technologies and the Canada Research Chair in Nanotechnology. "Perovskite solar cells can enable us to use techniques already... more read more

A new technique using liquid metals to create integrated circuits that are just atoms thick could lead to the next big advance for electronics.

The process opens the way for the production of large wafers around 1.5 nanometres in depth (a sheet of paper, by comparison, is 100,000nm thick). Other techniques have proven unreliable in terms of quality, difficult to scale up and function only at very high temperatures -- 550 degrees or more. Distinguished Professor Kourosh Kalantar-zadeh, from the School of Engineering at RMIT University in Melbourne, Australia, led the project, which also included colleagues from RMIT and researchers from CSIRO, Monash University, North Carolina State University and the University of California. He said the electronics industry had hit a barrier. "The fundamental technology of car engines... more read more

Credit: Michigan State University

Engineering researchers at Michigan State University have developed the first stretchable integrated circuit that is made entirely using an inkjet printer, raising the possibility of inexpensive mass production of smart fabric.

Imagine: an ultrathin smart tablet that can be stretched easily from mini-size to extra large. Or a rubber band-like wrist monitor that measures one's heartbeat. Or wallpaper that turns an entire wall into an electronic display. These are some of the potential applications of the stretchable smart fabric developed in the lab of Chuan Wang, assistant professor of electrical and computer engineering. And because the material can be produced on a standard printer, it has a major potential cost advantage over current technologies that are expensive to manufacture. "We can conceivably make the costs of producing flexible electronics comparable to the costs of printing newspapers... more read more

Credit: University of Illinois

Sports analytics--tracking how fast the ball is moving or how players move across the field--is becoming a key component of how coaches make decisions and fans view games.

Data for these analytics is currently sourced through cameras in stadiums and courts and is incredibly expensive to acquire. In an effort to make big data analytics more accessible for the sports industry, researchers from the University of Illinois at Urbana-Champaign have utilized IoT devices--low-cost sensors and radios--that can be embedded into sports equipment (e.g., balls, rackets, and shoes), as well as in wearable devices. "There's a lot of interest in analyzing sports data though high-speed cameras, but a system can cost up to $1 million to implement and maintain. It's only accessible to big clubs," said Mahanth Gowda, a PhD candidate in computer science and... more read more

Credit: Tour Group/Rice University

Rice University's nanotube-reinforced material can be shaped, is highly conductive

A chunk of conductive graphene foam reinforced by carbon nanotubes can support more than 3,000 times its own weight and easily bounce back to its original height, according to Rice University scientists. Better yet, it can be made in just about any shape and size, they reported, demonstrating a screw-shaped piece of the highly conductive foam. The Rice lab of chemist James Tour tested its new "rebar graphene" as a highly porous, conductive electrode in lithium ion capacitors and found it to be mechanically and chemically stable. The research appears in the American Chemical Society journal ACS Applied Materials and Interfaces. Carbon in the form of atom-thin graphene is among... more read more

Credit: Kyoto University iCeMS

A new computational method may improve the control of nanomaterial fabrication

Daniel Packwood, Junior Associate Professor at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS), is improving methods for constructing tiny "nanomaterials" using a "bottom-up" approach called "molecular self-assembly". Using this method, molecules are chosen according to their ability to spontaneously interact and combine to form shapes with specific functions. In the future, this method may be used to produce tiny wires with diameters 1/100,000th that of a piece of hair, or tiny electrical circuits that can fit on the tip of a needle. Molecular self-assembly is a spontaneous process that cannot be controlled directly by laboratory... more read more

Credit: Cheng Sun

Tiny, soft, transparent nanofabricated devices turned into ultrasensitive microphones

A tiny, transparent device that can fit into a contact lens has a bright future, potentially helping a range of scientific endeavors from biomedicine to geology. Developed by Northwestern University scientists, the device, called the Micro-ring resonator detector, can determine the speed of the blood flow and the oxygen metabolic rate at the back of the eye. This information could help diagnose such common and debilitating diseases as macular degeneration and diabetes. The Micro-ring device builds upon Professor Hao F. Zhang's groundbreaking work in 2006 to develop photoacoustic imaging, which combines sound and light waves to create images of biological materials. The imaging technique... more read more

Credit: UBC

University of British Columbia researchers have developed a magnetic drug implant--the first of its kind in Canada--that could offer an alternative for patients struggling with numerous pills or intravenous injections.

The device, a silicone sponge with magnetic carbonyl iron particles wrapped in a round polymer layer, measures just six millimetres in diameter. The drug is injected into the device and then surgically implanted in the area being treated. Passing a magnet over the patient's skin activates the device by deforming the sponge and triggering the release of the drug into surrounding tissue through a tiny opening. "Drug implants can be safe and effective for treating many conditions, and magnetically controlled implants are particularly interesting because you can adjust the dose after implantation by using different magnet strengths. Many other implants lack that feature," said... more read more


Partner of the Week

Books and products

Materialsgate Partners