MMaterialsgateNEWS vom 20.08.2008

Light metals against bombs and grenades

A cheap and simple structure made of aluminium can mean the difference between life and death the day the bombs go off.
A soldier in a war lives a life exposed to danger – both inside the compound fence and on assignment on the outside. If the container he lives in is struck by a direct hit, it can be transformed into a clump of twisted metal in a matter of seconds. If he drives over a land mine, he and his vehicle can be blown sky high.

War is never safe. Nevertheless, it’s possible to protect soldiers from at least some of the dangers. Tank steel and armoured concrete provide good protection, but structures made from steel or concrete are quite heavy, and can be difficult to move. Aluminium, on the other hand, is a light product -- in a number of different ways.

One of the Norwegian University of Science and Technology’s three Centres for Research-based Innovation is called SIMLab (Structural Impact Laboratory). Here, researchers are working with aluminium structures for protection against impacts, metal-piercing projectiles and explosions from everything from small stones to bombs -- in war or in peace.

“We have developed a light, cheap and flexible solution to protect fences, buildings, ammunition dumps and containers”, says the lab’s leader, Magnus Langseth.

Stands against most

The solution has grown out of a close co-operative effort between the Norwegian Defence Estates Agency (NDEA), a branch of the Norwegian Defence Ministry, and NTNU. NDEA is responsible for the Norwegian camps and compounds that are involved in international operations, and has over a number of years financed the centre’s research on protective structures for both military and civilian use.

The structure is made from a type of double panel filled with a heavy substance found on site, such as dirt, sand, gravel or small stones. The panels are pieced together from aluminium shapes that have cavities in them, which are shaped out of internal division walls. These aluminium shapes are easy to produce by extruding them through a kind of mouthpiece that gives them the desired cross-section. They are also easy to move, and are pieced together using a click-together system. A panel is placed in a lifting device and is mounted on a container wall, for example. Afterwards it can be filled from the top with weight, which then can be drained out of the bottom when the panel needs to be unmounted and moved to another area.

Two men can completely secure a container in this manner in the course of a morning.
“These filled aluminium shapes can stand against projectiles and explosives” explains Tore Børvik, who works with NDEA and is an adjunct lecturer at NTNU, with a position at SIMLab.

Survived the test

The system was tested in a full-scale explosion and demonstrated its effectiveness: the panelled container received just minor damage from an explosion that was equivalent to 4 tonnes of TNT detonated from 120 metres away. Without the light metal protection, the container would have been blown to smithereens. But there remain a few details that have to be improved, so the system isn’t on the market yet. Nevertheless, a number of NATO countries have already shown interest in it.

“We at NTNU aren’t in the business of producing these things”, Langseth says. “Our job is to develop work tools that product developers need. We make computer models for design, and experiment with alloys, dimensions and construction. The tools for this type of protection need just a little more work before they’re ready.”

On dangerous roads

Only a few of the vehicles used for peacekeeping forces are protected from land mines. Tank steel is expensive, but first and foremost it’s heavy – and many places are inaccessible to a four-wheel drive that’s been armoured with tank steel. A vehicle needs lightweight protection.

Aluminium is a light metal. But a gravel-filled panel is quite heavy, and isn’t suited as either a bottom plate or as a canopy. So SIMLab’s researchers are working to develop light plates made from aluminium foam that in time may be used to solve the dilemma.

“This is an extremely complex problem”, Langseth emphasises. “When a landmine explodes, the combination of sand and air pressure tosses the vehicle and the driver up in the air. We have to find a method to absorb the pressure, something that is lightweight and doesn’t take up much space. We don’t yet have the technology, but we’re working with the design tools that we have already developed.”

SIMLab has now been invited to join an international co-operative effort comprised of the world’s leading researchers in mechanics and materials where the theme is protection of vehicles in war zones.

Lisa Olstad/The norwegian research magazine Gemini

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

Metallisierte Fasern stehen bei Textilproduzenten hoch im Kurs. Ende 2007 hat die Empa die Rechte an ihrem Patent für ein spezielles Faserbeschichtungsverfahren ...
an die Tersuisse Multifils SA in Emmenbrücke übertragen - und die Pilotanlage gleich mitgeliefert. Die von der Empa entwickelte Technologie stärkt die Schweizer Wirtschaft auf dem globalen Textilmarkt. Mit dem neuen Verfahren lassen sich Fasern wesentlich dünner beschichten - was die Kosten und den Materialverbrauch senkt, die Umwelt schont und die textilen Eigenschaften der Stoffe unverändert lässt. Silberbeschichtete Fasern und Stoffe schützen vor Bakterien, UV-Strahlen und Elektrosmog... mehr
Erfolgreich haben drei Forscher des Berliner Hahn-Meitner-Instituts (HMI) in Schwerelosigkeit untersucht, wie die Erdanziehung die Eigenschaften eines Metallschaums beeinflusst.
Sie haben ihre Experimente in einem umgebauten Airbus 300 durchgeführt. Das Flugzeug fliegt auf einer Art Buckelbahn. Dabei steigt es immer wieder zunächst steil auf, um danach im freien Fall entlang einer Wurfparabel zu fliegen. Während eines solchen Fluges herrscht immer wieder kurzzeitig fast doppelte Erdanziehung, die von einer 20 Sekunden dauernden Phase der Schwerelosigkeit abgelöst wird. Für ihre Versuche haben die Wissenschaftler ein transportables Labor in der Größe eines Umzugskartons... mehr
Mechanische Eigenschaften wie beim Originalmaterial
Zur Durchführung aller Funktionsprüfungen hat sauer product, Dieburg, das Träger- und Abdeckblech für einen Staubsauger als Funktionsprototyp mit einer speziellen Lasertechnik schichtweise aus einem Stahlpulver aufgebaut. Bei diesem als Lasercusing bezeichneten Verfahren entsteht das metallische Werkstück unmittelbar aus den Daten des 3D-CADVolumenmodells. Ein Hochleistungslaser in der Laseranlage schmilzt das einkomponentige Metallpulver vollständig auf. Dadurch entsteht Schicht um Schicht... mehr

Partner der Woche

Materialsgate Login