MMaterialsgateNEWS vom 20.05.2016

Verwandte MaterialsgateCARDS

Transparent - flexibel - druckbar: Schlüsseltechnologien für die Displays von morgen

In der trendstarken Welt der Displaytechnologien sind innovative Materialien und Technologien entscheidend, um das Seherlebnis beispielsweise durch erhöhte Pixeldichte, besseren Kontrast, größere Formate und nutzerfreundliches Design zu steigern.

Das Fraunhofer ISC bietet mit seinen neuen Materialentwicklungen im Bereich Optik und Elektronik ganz neue Anwendungsmöglichkeiten für die Displays der Zukunft. Auf der SID International Symposium on Information Display (22. bis 27. Mai 2016, San Francisco) präsentiert das Fraunhofer ISC seine Kompetenzen in diesem Bereich am Stand 1021 in der North Hall D des Moscone Center.

Kostengünstige Verfahren

Um progressive Display-Technologien für die Massenproduktion tauglich zu machen, müssen kostengünstige, einfache Prozessverfahren unter Verwendung adaptierbarer, preiswerter Materialien entwickelt werden. Für wichtige Schlüsseldetails in der Display-Technologie fehlten jedoch bisher die geeigneten Lösungen. Herkömmliche, oft teure oder wenig flexible Materialien können nun durch Entwicklungen von Fraunhofer ISC ersetzt werden. Die anorganisch-organischen Hybridpolymere und Sol-Gel-Materialien des Fraunhofer ISC lassen sich mit nasschemischen Druckverfahren und Rolle-zu-Rolle-Verfahren unkompliziert und kostengünstig verarbeiten. Eine Verbesserung der optischen, mechanischen und elektrischen Eigenschaften eröffnen außerdem neue Anwendungen und Designmöglichkeiten im Bereich der flexiblen, transparenten und 3D Displays.

Transparente und flexible Touchscreens

Bisher fehlte für flexible Displays die Technologie, um das dazugehörige Touchscreen mit entsprechender Elektronik zu verwirklichen. Mit gedruckten quasi transparenten polymeren Piezosensoren von Fraunhofer ISC steht nun eine geeignete Technologie bereit, die im EU-Projekt »Flashed!« entwickelt wurde. Die Sensoren messen Verformungen beispielsweise beim Verbiegen flexibler Displays oder den Druck eines Fingers sowie, falls gewünscht, Temperaturunterschiede. Sie sind nahezu beliebig skalierbar und damit auch für große Formate einsetzbar. Herkömmliche Touch-Screens auf Basis von ITO können bei flexiblen Displays aus Stabilitätsgründen nicht verwendet werden. Über einfachen Siebdruck können die Sensorpasten auf PET-Folien oder andere Substrate aufgetragen werden.

Neben Touchscreens lassen sich Passivierungsschichten und Isolatoren für Backplanes mit flexiblen und transparenten Materialien von Fraunhofer ISC herstellen, ebenso leitende und halbleitende Schichten. Als Alternative zu vakuumprozessierten Indiumzinnoxid (ITO) oder halbleitenden Metalloxiden können nasschemisch verarbeitbare Sol-Gel Materialien per Tauchen, Sprühen oder appliziert werden.

Bessere Lichtausbeute

Das Fraunhofer ISC kann auch im Zwischenaufbau, beispielsweise von OLED-Panels, geeignete Materialien bereitstellen. OLEDs sind zwar kostengünstig herzustellen und sparsam im Verbrauch, doch ein erheblicher Anteil des Lichts geht durch interne Streuverluste an zu rauen Grenzflächen mit Brechzahlhub zwischen leitfähiger Schicht und Substrat/Schutzschicht verloren. Mit einer auf Sol-Gel basierten glatten Schicht mit integrierten Streuzentren kann die Streuwirkung gezielt gesteuert und damit die Auskopplung des Lichts aus den OLED verbessert werden. So lässt sich die nutzbare Lichtausbeute je nach Aufbau deutlich auf über 50% erhöhen. Weitere Anwendungen zum besseren Lichtmanagement in Displays sind ebenfalls möglich.

3D Displays

Im Bereich 3D und Virtual Reality gibt es noch viel Entwicklungspotenzial. Um die Technologie der holographischen, also möglichst lebensechten, dreidimensionalen Darstellungen voranzutreiben, setzen Hersteller auf neue Materialien und Verfahren. Das Fraunhofer ISC bietet Entwicklungen im Bereich der diffraktiven und holographischen optischen Elemente und 3D-Strukturierung mittels 2-Photon-Polymerisation. Das Laserdirektschreibverfahren auf Basis der 2-Photonen-Absorption (TPA) erlaubt eine nahezu willkürliche Mikrostrukturierung von Oberflächen und ist im Vergleich zu konventionellen 3D-Strukturierungsmethoden schnell, einfach und günstig. Poröse Schichten für Flüssigkristalle ermöglichen schaltbare optische Elemente in variabler Dicke für 3D Displays. Mit beiden Technologien könnte eine wirklichkeitsnahe, dreidimensionale Darstellung realisiert werden.

Quelle: Fraunhofer-Institut für Silicatforschung ISC - 19.05.2016.

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

Flüssigkristalle sind ein wesentlicher Baustein für Displays von Computern, Handys und Tabletts. So genannte bananenförmige Flüssigkristalle könnten in Zukunft dabei helfen, diese Technologie noch schneller und energiesparender zu machen.

Eine internationale Forschergruppe der Martin-Luther-Universität Halle-Wittenberg (MLU) und des Trinity College in Dublin hat nun eine Möglichkeit gefunden, diese großflächig und defektfrei anzuordnen. Das macht das Material auch für Anwendungen in der Elektronik und der Optik denkbar. Die Ergebnisse wurden kürzlich im internationalen Fachjournal "Nature Communications" veröffentlicht. Flüssigkristalle sind Stoffe, die einerseits flüssig sind, aber wie die festen Kristalle auch richtungsabhängige Eigenschaften haben. Genauso ist es auch bei den "bananenförmigen" Flüssigkristallen, die die Arbeitsgruppe des halleschen Chemikers Prof. Dr. Carsten Tschierske... mehr mehr lesen

With just a tiny tweak, researchers at Kyushu University greatly increased the device lifetime of organic light-emitting diodes (OLEDs) that use a recently developed class of molecules to convert electricity into light with the potential for increased efficiency at a lower cost in future displays and lighting.

The easily implemented modifications can also potentially increase the lifetime of OLEDs currently used in smartphone displays and large-screen televisions. Typical OLEDs consist of multiple layers of organic films with various functions. At the core of an OLED is an organic molecule that emits light when a negatively charged electron and a positively charged hole, which can be thought of as a missing electron, meet on the molecule. Until recently, the light-emitting molecules were either fluorescent materials, which can be low cost but can only use about 25% of electrical charges, or phosphorescent materials, which can harvest 100% of charges but include an expensive metal such as platinum... mehr mehr lesen

A new material that is both highly transparent and electrically conductive could make large screen displays, smart windows and even touch screens and solar cells more affordable and efficient, according to the Penn State materials scientists and engineers who discovered it.

Indium tin oxide, the transparent conductor that is currently used for more than 90 percent of the display market, has been the dominant material for the past 60 years. However, in the last decade, the price of indium has increased dramatically. Displays and touchscreen modules have become a main cost driver in smartphones and tablets, making up close to 40 percent of the cost. While memory chips and processors get cheaper, displays get more expensive from generation to generation. Manufacturers have searched for a possible ITO replacement, but until now, nothing has matched ITO's combination of optical transparency, electrical conductivity and ease of fabrication. A team led by Roman... mehr mehr lesen

Americans, on average, replace their mobile phones every 22 months, junking more than 150 million phones a year in the process.

When it comes to recycling and processing all of this electronic waste, the World Health Organization reports that even low exposure to the electronic elements can cause significant health risks. Now, University of Missouri researchers are on the path to creating biodegradable electronics by using organic components in screen displays. The researchers' advancements could one day help reduce electronic waste in the world's landfills. "Current mobile phones and electronics are not biodegradable and create significant waste when they're disposed," said Suchismita Guha, professor in the Department of Physics and Astronomy at the MU College of Arts and Science. "This... mehr mehr lesen

MaterialsgateNEWSLETTER

Partner der Woche

Suche in MaterialsgateNEWS

Bücher und Produkte

MaterialsgateANSWERS

MaterialsgateFAIR:
LASSEN SIE SICH INSPIRIEREN