MMaterialsgateNEWS vom 31.03.2015

Displays: Roll Up Your Screen and Stow It Away?

TAU researchers develop molecular backbone of super-slim, bendable digital displays

From smartphones and tablets to computer monitors and interactive TV screens, electronic displays are everywhere. As the demand for instant, constant communication grows, so too does the urgency for more convenient portable devices — especially devices, like computer displays, that can be easily rolled up and put away, rather than requiring a flat surface for storage and transportation.

A new Tel Aviv University study, published recently in Nature Nanotechnology, suggests that a novel DNA-peptide structure can be used to produce thin, transparent, and flexible screens. The research, conducted by Prof. Ehud Gazit and doctoral student Or Berger of the Department of Molecular Microbiology and Biotechnology at TAU's George S. Wise Faculty of Life Sciences, in collaboration with Dr. Yuval Ebenstein and Prof. Fernando Patolsky of the School of Chemistry at TAU's Faculty of Exact Sciences, harnesses bionanotechnology to emit a full range of colors in one pliable pixel layer — as opposed to the several rigid layers that constitute today's screens.

"Our material is light, organic, and environmentally friendly," said Prof. Gazit. "It is flexible, and a single layer emits the same range of light that requires several layers today. By using only one layer, you can minimize production costs dramatically, which will lead to lower prices for consumers as well."

From genes to screens

For the purpose of the study, a part of Berger's Ph.D. thesis, the researchers tested different combinations of peptides: short protein fragments, embedded with DNA elements which facilitate the self-assembly of a unique molecular architecture.

Peptides and DNA are two of the most basic building blocks of life. Each cell of every life form is composed of such building blocks. In the field of bionanotechnology, scientists utilize these building blocks to develop novel technologies with properties not available for inorganic materials such as plastic and metal.

"Our lab has been working on peptide nanotechnology for over a decade, but DNA nanotechnology is a distinct and fascinating field as well. When I started my doctoral studies, I wanted to try and converge the two approaches," said Berger. "In this study, we focused on PNA — peptide nucleic acid, a synthetic hybrid molecule of peptides and DNA. We designed and synthesized different PNA sequences, and tried to build nano-metric architectures with them."

Using methods such as electron microscopy and X-ray crystallography, the researchers discovered that three of the molecules they synthesized could self-assemble, in a few minutes, into ordered structures. The structures resembled the natural double-helix form of DNA, but also exhibited peptide characteristics. This resulted in a very unique molecular arrangement that reflects the duality of the new material.

"Once we discovered the DNA-like organization, we tested the ability of the structures to bind to DNA-specific fluorescent dyes," said Berger. "To our surprise, the control sample, with no added dye, emitted the same fluorescence as the variable. This proved that the organic structure is itself naturally fluorescent."

Over the rainbow

The structures were found to emit light in every color, as opposed to other fluorescent materials that shine only in one specific color. Moreover, light emission was observed also in response to electric voltage — which make it a perfect candidate for opto-electronic devices like display screens.

The study was funded by the Momentum Fund of Ramot, TAU's technology transfer company, which also patented the new technology. The researchers are currently building a prototype of the screen and are in talks with major consumer electronics companies regarding the technology.

Source: American Friends of Tel Aviv University - 30.03.2015.

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

Today, touch screens are everywhere, from smart phones and tablets, to computer monitors, to interactive digital signage and displays.

Many touch screens are made of layered thin (billionths of a meter thick) films of indium-tin oxide, an inorganic material that is electrically conductive, which allows electrical signals to travel from the "touch" to the edges of the display, where they are sensed by the device--as well as optically transparent. But these and other inorganic materials have a downside, as anyone who has ever dropped their smart phone knows: they are brittle and shatter easily. The solution? Make the screens flexible and durable without sacrificing any of their electrical or optical properties. A paper in the latest issue of The Optical Society (OSA) journal Optical Materials Express describes a... mehr mehr lesen

Saarbrücker Informatiker haben eine Methode entwickelt, mit deren Hilfe in Zukunft jeder Laie Displays in beliebigen Formen auf verschiedene Materialien drucken kann.

Auf diese Weise kann man mit dem heimischen Drucker hauchdünne Bildschirme in das Papier einarbeiten, die selber entworfene Symbole anzeigen oder sogar auf Berührungen reagieren können. Ihr Verfahren, das zuvor auf einer internationalen Konferenz ausgezeichnet wurde, präsentieren die Forscher nun vom 16. bis 20. März auf der Computermesse Cebit in Hannover (Halle 9, Stand 13). Die Postkarte zeigt ein historisches Automobil. Drückt man auf einen Knopf, leuchten Hinterachse und Lenkradstange in der gleichen Farbe auf. Möglich machen dies zwei Segmente auf einem flexiblen Display, die genau der Form der Autoteile entsprechen. Saarbrücker Informatiker um Jürgen Steimle haben es auf... mehr mehr lesen

Mit einfachen Mitteln lassen sich berührungsempfindliche Displays auf viele Materialen drucken

Wer bisher eine Grußkarte an die Liebsten drucken wollte, konnte diese nur durch bunte Grafiken, extravagante Schrifttypen und edles Papier aufwerten. Doch wie wäre es, wenn man auf dem heimischen Drucker gleich hauchdünne Bildschirme in das Papier einarbeiten könnte, die selber entworfene Symbole anzeigen oder sogar auf Berührungen reagieren? Nicht nur das ermöglichen nun Saarbrücker Forscher unter anderem vom Max-Planck-Institut für Informatik. Sie haben einen Ansatz entwickelt, mit dessen Hilfe in der Zukunft jeder Laie Displays in beliebigen Formen auf verschiedene Materialien drucken und somit den Alltag völlig verändern könnte. Die Postkarte zeigt ein historisches Automobil... mehr mehr lesen

Wer bisher eine Grußkarte an die Liebsten drucken wollte, konnte diese nur durch bunte Grafiken, extravagante Schrifttypen und edles Papier aufwerten. Doch wie wäre es, wenn man auf dem heimischen Drucker gleich hauchdünne Bildschirme in das Papier einarbeiten könnte, die selber entworfene Symbole anzeigen oder sogar auf Berührungen reagieren?

Nicht nur das ermöglichen nun Saarbrücker Informatiker. Sie haben einen Ansatz entwickelt, mit dessen Hilfe in der Zukunft jeder Laie Displays in beliebigen Formen auf verschiedene Materialien drucken und somit den Alltag völlig verändern könnte. Die Postkarte zeigt ein historisches Automobil. Drückt man auf einen Knopf, leuchten Hinterachse und Lenkradstange in der gleichen Farbe auf. Möglich machen dies zwei Segmente auf einem flexiblen Display, die genau der Form der Autoteile entsprechen. Saarbrücker Informatiker um Jürgen Steimle haben es auf einem handelsüblichen Tintenstrahldrucker ausgedruckt. Es ist elektrolumineszent: Legt man eine elektrische Spannung an, gibt es Licht... mehr mehr lesen

MaterialsgateNEWSLETTER

Partner der Woche

Suche in MaterialsgateNEWS

Bücher und Produkte

MaterialsgateANSWERS

MaterialsgateFAIR:
LASSEN SIE SICH INSPIRIEREN