MMaterialsgateNEWS vom 26.03.2014

Photonik: Ultradünne Lichtdetektoren

Eine neue, extrem dünne Art von Lichtdetektoren wurde an der TU Wien hergestellt. Dabei kombinierte man erstmals zwei ganz unterschiedliche Technologien: Metamaterialien und Quantenkaskaden-Strukturen.

Ihr subtiles Wechselspiel von Elektronen und Licht macht sie technologisch so interessant: Ultradünne Schichtsysteme aus verschiedenen Halbleitermaterialien können verwendet werden, um mit Hilfe von elektrischer Spannung Licht zu erzeugen, sie können aber auch umgekehrt aus Licht elektrischen Strom machen und als Lichtdetektoren dienen. Bisher war es allerdings schwierig, das Licht überhaupt an diese Halbleiter-Schichtsysteme anzukoppeln. Mit einem besonderen Trick gelang das nun an der TU Wien: Man verwendete Meta-Materialien, die aufgrund ihrer besonderen mikroskopischen Struktur das Licht im Terahertz-Bereich auf ganz spezielle Weise manipulieren.

Maßgeschneiderte Halbleiterschichten

„Ultradünne Schichtsysteme aus Halbleitermaterialien haben den großen Vorteil, dass man ihre elektronischen Eigenschaften sehr gut beeinflussen kann“, erklärt Prof. Karl Unterrainer vom Institut für Photonik der TU Wien. Durch die Auswahl der Materialien, der Schichtdicke und Geometrie lässt sich beeinflussen, wie sich die Elektronen in diesen Systemen verhalten. So kann man etwa Quanten-Kaskaden-Laser bauen, in denen Elektronen von Schicht zu Schicht hüpfen und jedes Mal ein Photon aussenden, oder man kann Detektoren herstellen, deren Empfindlichkeit auf eine bestimmte Licht-Wellenlänge optimiert ist.

Das Problem dabei ist allerdings: Die Quantentheorie verbietet Photonen mit bestimmten Schwingungsrichtungen (Polarisation), mit den Elektronen des Schichtsystems zu wechselwirken. Licht, das frontal auf die Schichtfläche fällt, hat auf die Elektronen im Schichtsystem gar keine Auswirkung. Man benötigt daher eine Methode, die Polarisationsrichtung des einfallenden Lichts zu drehen, damit es in den Halbleiterschichten detektiert werden kann.

Künstlicher Schmetterling

Das gelang nun mit einer ungewöhnlichen Methode – mit Metamaterialien. Ein Metamaterial entsteht, indem man eine regelmäßige geometrische Struktur erzeugt, deren Periode kleiner ist als die Wellenlänge des Lichts. Je nach der Geometrie dieser Struktur wird das Licht gestreut, manche Wellenlängen können absorbiert, andere reflektiert werden. Das Schillern auf den Flügeln eines Schmetterlings entsteht genau durch solche Effekte.

Das Metamaterial, das man an der TU Wien nun auf das Halbleiter-Schichtsystem aufbrachte, dreht die Polarisationsrichtung des einfallenden Lichts, wodurch es dann optimal an die Elektronen im Halbleiter ankoppeln kann. Somit löst das Licht dann ein elektrisches Signal aus.

Das Licht das verwendet wurde, ist deutlich langwelliger als das sichtbare Licht: Es handelt sich um Strahlung im Terahertz- oder Infrarotbereich, mit Wellenlängen in der Größenordnung von Zehntelmillimetern. Dieser Wellenlängenbereich ist technologisch sehr wichtig – etwa für Computertechnologie der nächsten Generation – aber es ist oft sehr schwer, mit diesen Wellenlängen zu arbeiten.

Der Detektor direkt am Chip

Die Entdeckung an der TU Wien ermöglicht es nun, Lichtdetektoren für Terahertz-Strahlung direkt in einen Chip einzubauen. „Mit ganz konventionellen Herstellungsmethoden könnte man auf diese Weise große Arrays von Dektektoren herstellen“, erklärt Karl Unterrainer. Viel Platz brauchen die Lichtdetektoren jedenfalls nicht: Um Licht zu detektieren reichen Schichten im Nanometer-Bereich aus – der Detektor ist damit über tausendmal dünner als die Wellenlänge des Lichtes, mit dem er interagiert.

Quelle: Technische Universität Wien - 25.03.2014.

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

Ultraviolettes Licht (UV) kann nicht nur Moleküle und biologisches Gewebe wie die Haut schädigen, sondern auch die Leistung von organischen Solarzellen beeinträchtigen, wenn sie der Strahlung lange ausgesetzt sind. Forschende der Christian-Albrechts-Universität zu Kiel (CAU) und des Helmholtz-Zentrums Geesthacht haben jetzt ein sogenanntes plasmonisches Metamaterial entwickelt, das mit Solartechnologie kompatibel ist und UV-Licht perfekt absorbiert.

Die Besonderheiten des Materials: Es ist nur 20 Nanometer dünn. Es ist einer der ersten Absorber aus Metamaterial, der für die hohen Frequenzen von UV-Licht gebaut wurde. Die Studie der Wissenschaftlerinnen und Wissenschaftler erschien kürzlich im renommierten Fachmagazin „Applied Physics Letters“. Die Verschlechterung von organischen Solarzellen durch UV-Licht ist ein herausforderndes Problem, das die Anwendung der Zellen begrenzt. Das neue Metamaterial, das das UV-Licht komplett blockiert, könnte die Haltbarkeit dieser Solarzellen verbessern. „Unser perfekter Absorber kann sogar auf flexiblem Material wie zum Beispiel Dünnfilm-Sonnenkollektoren auf Textilien der nächsten Generation... mehr mehr lesen

Entwicklung der weltweit ersten ultraflachen, bipolaren Meta-Linse gelungen – Material aus Glas und Gold 2.000 Mal dünner als menschliches Haar - Nutzung in Photonik bei optischen Schaltkreisen und Leuchtdioden

Prof. Dr. Thomas Zentgraf, Leiter der Arbeitsgruppe „Ultraschnelle Nanophotonik“ am Department Physik der Universität Paderborn, und Dr. Shuang Zhang, Leiter des Teams an der Universität Birmingham, haben gemeinsam die weltweit erste ultraflache Linse für sichtbares Licht entwickelt. Im Gegensatz zu herkömmlichen geschliffenen Glaslinsen ist die neue Linse flach und extrem dünn. Sie ist nur 20 bis 30 Nanometer (nm) dick, also 0,00002 bis 0,00003 mm. Ein menschliches Haar ist vergleichsweise etwa 2.000 Mal dicker. Die Linse besteht aus einem neuartigen so genannten Metamaterial, einer Kombination aus Glas und Gold und vergrößert bzw. verkleinert Objekte in Abhängigkeit zur Art des... mehr mehr lesen

In many respects, metamaterials are supernatural. These manmade materials, with their intricately designed structures, bend electromagnetic waves in ways that are impossible for materials found in nature.

Scientists are investigating metamaterials for their potential to engineer invisibility cloaks — materials that refract light to hide an object in plain sight — and “super lenses,” which focus light beyond the range of optical microscopes to image objects at nanoscale detail. Researchers at MIT have now fabricated a three-dimensional, lightweight metamaterial lens that focuses radio waves with extreme precision. The concave lens exhibits a property called negative refraction, bending electromagnetic waves — in this case, radio waves — in exactly the opposite sense from which a normal concave lens would work. Concave lenses typically radiate radio waves like spokes from a wheel... mehr mehr lesen

Berkeley Lab Researchers Direct the Self-Assembly of Gold Nanoparticles into Device-Ready Thin films

Scientists with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have directed the first self-assembly of nanoparticles into device-ready materials. Through a relatively easy and inexpensive technique based on blending nanoparticles with block co-polymer supramolecules, the researchers produced multiple-layers of thin films from highly ordered one-, two- and three-dimensional arrays of gold nanoparticles. Thin films such as these have potential applications for a wide range of fields, including computer memory storage, energy harvesting, energy storage, remote-sensing, catalysis, light management and the emerging new field of plasmonics... mehr mehr lesen

MaterialsgateNEWSLETTER

Partner der Woche

Suche in MaterialsgateNEWS

Bücher und Produkte

MaterialsgateANSWERS

MaterialsgateFAIR:
LASSEN SIE SICH INSPIRIEREN