MMaterialsgateNEWS vom 24.03.2011

Fertigung: Damit sich Kunststoff und Metall stabil verbinden

Beim "Clinchen" werden Bleche ohne zusätzliche Hilfselemente zusammengefügt - es benötigt weder Nieten noch Klebstoff. Stattdessen presst ein Stempel die beiden Bleche in eine Matrize, das Material formt sich um. Es entsteht eine unebene aber stabile Verbindung, die häufig im Automobilbau eingesetzt wird.

Die Professur Virtuelle Fertigungstechnik der Technischen Universität Chemnitz hat dieses Verfahren weiterentwickelt: Das "Flach-Clinchen" eignet sich nicht nur für Bleche, auch Kunststoffe können miteinander oder mit Metallen verbunden werden, sogar mit solchen, die sich nur schwer umformen lassen. "Auch das mechanische Fügen von Holz und Kartonage ist schon mit diesem Verfahren erfolgreich praktiziert worden", berichtet Ulrike Beyer, Wissenschaftliche Mitarbeiterin der Professur Virtuelle Fertigungstechnik. Die Professur präsentiert ihr Verfahren vom 4. bis zum 8. April 2011 auf der Hannover Messe. Die Wissenschaftler sind vertreten auf dem mitteldeutschen Gemeinschaftsstand "Forschung für die Zukunft" (Halle 2, Stand C37). Außerdem beteiligen sie sich mit einem Vortrag am Forum "Forschung & Technologie": Ulrike Beyer stellt das neue mechanische Fügeverfahren am 5. April um 10.20 Uhr vor (Halle 2, Stand C45).

"Das neue Verfahren kann nicht nur für mehr Werkstoffe eingesetzt werden als das bisherige, sondern auch für die entstehenden Verbindungen erweitert sich der Einsatzbereich", sagt Beyer. Denn die Verbindungen sind zumindest auf einer Seite eben gestaltet - dadurch können sie auch an sichtbaren Stellen verwendet werden. Das liegt daran, dass die beim traditionellen Clinchen genutzte Matrize durch einen ebenen Amboss ersetzt ist. So findet die Umformung in der Werkstoffebene statt und dehnt die zu verbindenden Materialien nicht über deren Dicke aus. "Das Verfahren ist zudem sehr effektiv", schätzt Beyer ein und erklärt: "Die Anlagentechnik ist günstig, auch die Werkzeuge sind universell einsetzbar. Außerdem können sowohl hydraulische als auch pneumatische oder elektromotorische Antriebe genutzt werden. Da die Feinjustierung von Stempel und Matrize entfällt, verkürzen sich die Rüstzeiten. Es sind keine vorbereitenden Arbeiten nötig und da der Prozess nur einen Arbeitsschritt hat, lassen sich kurze Taktzeiten realisieren." Zudem können höhere Scherzugfestigkeiten der Verbindung erreicht werden, als beim traditionellen Clinchen.

"Neuartig ist der Einsatz dieser Technologie für die Herstellung von Kunststoff-Metall-Verbunden", betont Beyer. Bei dieser mechanischen Verklammerung von Kunststoff und Metall innerhalb der Werkstoffebene spielen viele Faktoren eine Rolle. "Um diese zu quantifizieren und den Werkstofffluss während des Flach-Clinchens darzustellen, war eine numerische Modellierung erforderlich", beschreibt Beyer die Arbeit der Chemnitzer Forscher und ergänzt: "Unser besonderes Augenmerk lag zunächst auf der exakten Aufnahme und Hinterlegung der Materialkennwerte des Kunststoffes. Mit den anschließend durchgeführten systematischen numerischen Analysen konnten die Parameter identifiziert werden, die die Größe der Hinterschneidung und somit die statische und dynamische Haltekraft der Kunststoff-Metall-Verbindung beeinflussen." Inzwischen haben die Wissenschaftler das Verfahren für die Verbindung von Kunststoff und Metall - also von einem organischen und einem anorganischen Stoff - für den Einsatz in der Industrie optimiert. "Diese hybride Flach-Clinch-Verbindung ist eine hervorragende Möglichkeit, mit einer kurzen und effektiven Prozesskette flexibles Multi-Material-Design zu gewährleisten und den intelligenten Leichtbau mit Trend zum Material-Mix weiter zu intensivieren", fasst die Leiterin der Professur, Prof. Dr. Birgit Awiszus, zusammen.

Auf der Hannover Messe möchte die Professur das Verfahren und seine industriellen Anwendungsmöglichkeiten bekannter machen und Kontakte zu weiteren Kooperationspartner knüpfen. "Wir arbeiten bereits erfolgreich mit der Eckold GmbH & Co. KG zusammen. Mit ihr wurden die entsprechenden Werkzeuge konzipiert. Jetzt suchen wir noch Partner, die das Fügeverfahren im industriellen Maßstab anwenden - diese können beispielsweise aus der Kunststoff- und Metallverarbeitung kommen, aber auch aus Holz- und Kartonageverarbeitung", so Awiszus abschließend.

Quelle: Technische Universität Chemnitz / Informationsdienst Wissenschaft (IDW) - 23.03.2011.

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

BMBF-Projekt CuBriLas ermöglicht erstmals sicheres Laserschweißen von Kupfer mit Anwendungen in der Elektronik.

Kupfer zählt zu den ersten Metallen, das von Menschenhand verarbeitet worden ist. Da es gut verformbar und somit leicht zu verarbeiten ist, kam das rötlich glänzende Metall bereits vor 10.000 Jahren bei den ältesten Kulturen als Werkstoff zum Einsatz. Durch den weiträumigen Gebrauch von Kupfer in Münzen, Essbesteck, aber auch Waffen und Schmuck im 5. bis 3. Jahrtausend v. Chr. ist diese Zeit als „Kupferzeit“ bekannt. Als ausgezeichneter Wärme- und Stromleiter findet Kupfer heute nicht nur in Form von Rohren, Kesseln oder Wärmetauschern in der Chemie- und Nahrungsmittelindustrie sowie der Installationstechnik Anwendung. Weder aus dem Schalter- und Transformatoren-, noch aus dem... mehr mehr lesen

Laserschweißen ist auf dem Vormarsch, stößt aber an Grenzen: Zwei transparente Kunststoff-Komponenten zusammenzufügen, war bisher nicht möglich. Forschern ist es jetzt gelungen, diese Hürde zu umgehen – mit der Wahl der richtigen Wellenlänge. Das neue Schweißverfahren revolutioniert die Bioanalytik

Es geht schnell, produziert kaum Abfälle und ist hoch präzise: Binnen weniger Sekunden schweißt ein Laserstrahl Gehäuse und Tachoabdeckung zusammen – ganz ohne Schrauben, Klammern oder Kleber. Das Ergebnis ist eine perfekte Schweißnaht, die mit bloßem Auge kaum sichtbar ist. Keine Funken sprühen während des Schweißens, Partikel fliegen nicht durch die Luft. Und: Die entstandene Hitze beschränkt sich auf einen minimalen Bereich. Das schont das Material. Viele Branchen setzen inzwischen auf das Laserschweißen von Kunststoffen. Dennoch stößt die Technik an Grenzen; vor allem bei der Wahl von zwei Kunststoff-Komponenten lässt sie keine große Freiheit. Denn bisher musste der... mehr mehr lesen

Das Forschungsvorhaben "Optimierung von Verzug und Eigenspannungen beim Schweißen dickwandiger Bauteile" wurde seit Mitte 2008 unter der Leitung von Professor Rethmeier durch die Mitarbeiter der Fachgruppe V.5 "Sicherheit gefügter Bauteile" der Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, bearbeitet und Ende 2010 erfolgreich abgeschlossen.

Die Schweißsimulation dickwandiger Bauteile stellt aufgrund der erhöhten Komplexität der thermophysikalischen und thermomechanischen Vorgänge beim Mehrlagenschweißen hohe Anforderungen an kommerziell verfügbare Schweißsimulationssoftware. Das umfasst die während des Fügeprozesses induzierten Verzüge und Eigenspannungen in das gefertigte Bauteil, welche zur Beurteilung der Fertigungsqualität von großer Bedeutung sind. Gerade in dickwandigen Bauteilen ist der Spannungszustand sowohl bedingt durch die konstruktive Steifigkeit der einzelnen Bauteile sowie der gesamten Baugruppe als auch aufgrund zusätzlicher externer Einspannvorrichtungen bei der Fertigung überaus komplex. Hinzu... mehr mehr lesen

Das Fraunhofer-Institut für Lasertechnik ILT stellt auf der Internationalen Messe für Kunststoff und Kautschuk eine Maschine zum Laser-Kunststoffschweißen vor. TransTWIST verbindet zwei transparente Fügepartner ohne Zusatz von Absorbern miteinander.

Auf dem Gemeinschaftsstand der Fraunhofer-Gesellschaft E91 in Halle 3 der diesjährigen Kunststoffmesse Düsseldorf (27.10. – 03.11. 2010) stellt das Fraunhofer ILT die laserbasierte Kunststoffschweißanlage TransTWIST vor. In Live-Vorführungen demonstrieren die Forscher, wie zwei transparente Fügepartner aus Kunststoff im Überlapp mittels Laserstrahlung miteinander verbunden werden können. Beim konventionellen Laserstrahlschweißen wird der untere Fügepartner üblicherweise mit einem geeigneten Strahlungsabsorber versehen. Dies ist zeit- und kostenintensiv. Zudem wird das Erscheinungsbild des Bauteils bzw. der Fügenaht durch die Eigenfarbe des Strahlungsabsorbers beeinträchtigt... mehr mehr lesen

MaterialsgateNEWSLETTER

Partner der Woche

Suche in MaterialsgateNEWS

Bücher und Produkte

MaterialsgateANSWERS

MaterialsgateFAIR:
LASSEN SIE SICH INSPIRIEREN