MMaterialsgateNEWS vom 10.05.2013

KIT-Forscher bauen Tarnkappe für Wärmefluss

Mit speziellen Metamaterialien lassen sich Licht und Schall um Objekte herum lenken. Nun konnten Forscher am KIT zeigen, dass sich mit den gleichen Methoden auch die Ausbreitung von Wärme gezielt beeinflussen lässt.

Eine strukturierte Platte aus Kupfer und Silikon leitet Wärme um einen zentralen Bereich herum, ohne dass dies am Rand Auswirkungen hätte. Die Ergebnisse stellen die Wissenschaftler nun in der Fachzeitschrift Physical Review Letters vor.

„Wichtig war es, für die thermische Tarnkappe die beiden verwendeten Materialien geschickt anzuordnen“, erklärt Robert Schittny vom KIT, der Erstautor der Studie. Kupfer ist ein sehr guter Wärmeleiter, der verwendete Silikonwerkstoff namens PDMS ein schlechter. „Indem wir ringförmige Silikonstrukturen in eine dünne Kupferplatte einlassen, stellen wir ein Material her, das Wärme in verschiedenen Richtungen verschieden schnell leitet. Nur so lässt es sich erreichen, dass ein Umweg um ein verstecktes Objekt zeitlich kompensiert werden kann.“

Wird eine einfache, solide Metallplatte am linken Rand erhitzt, wandert die Wärme gleichmäßig auf die rechte Seite. Die Temperatur der Platte nimmt dabei von links nach rechts ab. Genau das gleiche Verhalten zeigt das neue Metamaterial aus Kupfer und Silikon außerhalb der Ringstruktur. Im Innern dringt jedoch zunächst keine Wärme ein und im Äußeren gibt es keine Anzeichen dafür, was im Inneren geschieht.

“Die Ergebnisse zeigen auf eindrucksvolle Art, dass Methoden aus der Transformationsoptik auch auf dem fundamental verschiedenen Feld der Thermodynamik anwendbar sind”, sagt Martin Wegener, Leiter des Instituts für Angewandte Physik am KIT. An seinem Institut entstand auch die erste dreidimensionale Tarnkappe für sichtbares Licht. Optik und Akustik basieren auf der Ausbreitung von Wellen, Wärme dagegen ist ein Maß für die ungeordnete Bewegung von Atomen. Dennoch lassen sich die zugrunde liegenden mathematischen Beschreibungen nutzen, um die Strukturen zu berechnen, die einen Tarnkappeneffekt ermöglichen. Mit den Methoden der sogenannten Transformationsoptik wird dabei eine Verzerrung des beschreibenden Koordinatensystems berechnet. Rechnerisch verschwindet ein ausgedehntes Objekt so in einem unendlich kleinen Punkt. Diese virtuelle Verzerrung lässt sich auf eine reale Metamaterialstruktur abbilden, die einfallendes Licht um das zu versteckende Objekt leitet, als wäre dieses gar nicht vorhanden.

„Ich hoffe, dass unsere Arbeit die Grundlagen legt für viele weitere Entwicklungen rund um thermodynamische Metamaterialien“, so Wegener. Thermische Tarnkappen stellen ein junges Gebiet der Grundlagenforschung dar. Langfristig jedoch könnten sie in Bereichen Anwendung finden, die ein effektives Wärmemanagement erfordern, etwa in Mikrochips, elektrischen Bauteilen oder Maschinen.

Quelle: Karlsruher Institut für Technologie - 08.05.2013.

Experiments on Transformation Thermodynamics: Molding the Flow of Heat, R. Schittny, M. Kadic, S. Guenneau, and M. Wegener,

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

New optical technologies using "metasurfaces" capable of the ultra-efficient control of light are nearing commercialization, with potential applications including advanced solar cells, computers, telecommunications, sensors and microscopes.

The metasurfaces could make possible "planar photonics" devices and optical switches small enough to be integrated into computer chips for information processing and telecommunications, said Alexander Kildishev, associate research professor of electrical and computer engineering at Purdue University. "I think we know enough at this point that we can realistically start to develop prototypes of devices for some applications," he said. The promise of metasurfaces is described in an article appearing Friday (March 15) in the journal Science. The article was co-authored by Kildishev; Alexandra Boltasseva, an assistant professor of electrical and computer engineering; and... mehr mehr lesen

Mehr zu diesem Thema:

A bit reminiscent of the Terminator T-1000, a new material created by Cornell researchers is so soft that it can flow like a liquid and then, strangely, return to its original shape.

Rather than liquid metal, it is a hydrogel, a mesh of organic molecules with many small empty spaces that can absorb water like a sponge. It qualifies as a "metamaterial" with properties not found in nature and may be the first organic metamaterial with mechanical meta-properties. Hydrogels have already been considered for use in drug delivery -- the spaces can be filled with drugs that release slowly as the gel biodegrades -- and as frameworks for tissue rebuilding. The ability to form a gel into a desired shape further expands the possibilities. For example, a drug-infused gel could be formed to exactly fit the space inside a wound. Dan Luo, professor of biological and environmental... mehr mehr lesen

In many respects, metamaterials are supernatural. These manmade materials, with their intricately designed structures, bend electromagnetic waves in ways that are impossible for materials found in nature.

Scientists are investigating metamaterials for their potential to engineer invisibility cloaks — materials that refract light to hide an object in plain sight — and “super lenses,” which focus light beyond the range of optical microscopes to image objects at nanoscale detail. Researchers at MIT have now fabricated a three-dimensional, lightweight metamaterial lens that focuses radio waves with extreme precision. The concave lens exhibits a property called negative refraction, bending electromagnetic waves — in this case, radio waves — in exactly the opposite sense from which a normal concave lens would work. Concave lenses typically radiate radio waves like spokes from a wheel... mehr mehr lesen

Researchers are edging toward the creation of new optical technologies using "nanostructured metamaterials" capable of ultra-efficient transmission of light, with potential applications including advanced solar cells and quantum computing.

The metamaterial - layers of silver and titanium oxide and tiny components called quantum dots - dramatically changes the properties of light. The light becomes "hyperbolic," which increases the output of light from the quantum dots. Such materials could find applications in solar cells, light emitting diodes and quantum information processing far more powerful than today's computers. "Altering the topology of the surface by using metamaterials provides a fundamentally new route to manipulating light," said Evgenii Narimanov, a Purdue University associate professor of electrical and computer engineering. Findings were detailed in a research paper published April... mehr mehr lesen

MaterialsgateNEWSLETTER

Partner der Woche

Suche in MaterialsgateNEWS

Bücher und Produkte

MaterialsgateANSWERS

MaterialsgateFAIR:
LASSEN SIE SICH INSPIRIEREN