MMaterialsgateNEWS vom 04.06.2012

Simulation: Auf smarten Oberflächen bleibt kein Tropfen

Sei es bei Fensterscheiben, Korrosionsbeschichtungen oder mikrofluidischen Systemen im medizinischen Labor – Oberflächen, die sich selbst von Wasser und anderen Flüssigkeiten befreien, würden vieles vereinfachen. Wie solche Oberflächen für verschiedene Anwendungen aussehen müssen, errechnet nun ein neues Simulationsprogramm.

Es regnet in Strömen. Ein kurzer Weg bis zum Auto, und schon vernebeln zahlreiche Tropfen auf der Brille die Sicht. Künftig könnte es allerdings überflüssig sein, das Putztuch zu zücken: Ist die Oberfläche des Glases ähnlich gestaltet wie die eines Lotusblattes, laufen die Tropfen von alleine ab, ohne Spuren zu hinterlassen. Sinnvoll sind solche selbstreinigenden Flächen nicht nur bei Brillengläsern – auch Korrosionsbeschichtungen würden dem nagenden Rost deutlich länger standhalten, wenn das Wasser nicht in kleinen Pfützen darauf stehen bliebe.

Doch wie müssen Oberflächen genau beschaffen sein, um sich optimal selbst zu reinigen? Das errechnet nun eine Simulationssoftware, die Forscher am Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg entwickelt haben. »Unsere Simulation zeigt, wie sich verschiedene Flüssigkeiten auf unterschiedlichen Oberflächen verhalten – ganz gleich, ob diese eben, gekrümmt oder strukturiert sind«, erklärt Dr. Adham Hashibon, Projektleiter am IWM. Das Programm simuliert zum einen die Form, die Flüssigkeitstropfen auf der Oberfläche annehmen – also etwa, ob sich die Flüssigkeit auf der Oberfläche verteilt oder sich tropfenmäßig zusammenzieht, um möglichst wenig Kontakt mit ihr zu haben. Zum anderen berechnet es das Fließverhalten und damit, wie sich die Flüssigkeiten auf verschiedenen Oberflächen bewegen. Die Forscher integrieren dabei Faktoren über viele Größenskalen hinweg: von atomaren Wechselwirkungen bis hin zu den Auswirkungen der mikroskopischen Oberflächenstruktur.

Die Software analysiert, was innerhalb eines Tropfens passiert – wie also die einzelnen Wassermoleküle miteinander wechselwirken, wie ein Tropfen von der Oberfläche angezogen wird und sich gegenüber der Luft abgrenzt. Die Forscher sprechen von der Drei-Phasen-Kontaktlinie zwischen Flüssigkeit, Oberfläche und Luft. »Es gibt sehr viele Parameter, die beeinflussen, wie sich die Flüssigkeit auf einer Fläche verhält – beispielsweise die Oberflächenbeschaffenheit des Materials und die Struktur, aber auch Substanzen, die in der Flüssigkeit gelöst sind. All dies haben wir in unterschiedlichen Detailierungsgraden in der Simulation berücksichtigt und können so unsere experimentellen Ergebnisse sehr gut wiedergeben«, sagt Hashibon.

Mikrofluidische Systeme verbessern

Auch für medizinische Untersuchungen ist die Simulation hilfreich. Müssen Ärzte Gewebezellen oder DNA-Bestandteile analysieren, verwenden sie dafür oft mikrofluidische Systeme wie Durchfluss-Küvetten. Die Flüssigkeit mit den gelösten Substanzen fließt durch winzige Kanäle und kleine Kammern und wird dabei analysiert. Wichtig ist, dass sie sich nach der Untersuchung restlos aus allen Kammern und Kanälen entfernen lässt. Denn würden Tropfenreste hängen bleiben, würden sie sich später mit der neuen Probe vermischen und die Ergebnisse verfälschen. Die Simulation soll künftig dabei helfen, solche mikrofluidischen Systeme zu optimieren und die Oberflächen so zu gestalten, dass möglichst wenig Flüssigkeit dort verbleibt. »Unser Ziel war es, das Benetzungsverhalten von Flüssigkeiten auf strukturierten Oberflächen besser zu verstehen und gezielt zu steuern«, sagt Hashibon. Doch damit nicht genug: Das Tool kann auch helfen, eine Art Verkehrsleitsystem in den mikrofluidischen Systemen zu realisieren: Sind an einer Weggabelung die weiterführenden Kanäle jeweils mit unterschiedlichen Oberflächenstrukturen versehen, lassen sich verschiedene Bestandteile trennen – beispielsweise fließen DNA-Moleküle in den einen Kanal, andere Bestandteile in den anderen. So lässt sich die Konzentration bestimmter Moleküle erhöhen. Das ist besonders wichtig, um beispielsweise die Nachweisempfindlichkeit eines Analyseverfahrens zu erhöhen.

Quelle: Fraunhofer-Gesellschaft – 01.06.2012.

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

Simulationen sind aus vielen Bereichen in Forschung, Industrie oder der Medizin nicht mehr wegzudenken. Die Menge der Daten und ihre Komplexität steigt, und die Betrachtungszeiträume werden länger. Daher ist es ist eine große Herausforderung, Prozesse möglichst realistisch zu untersuchen, ohne die verfügbaren Rechenleistungen zu sprengen.

Wissenschaftler des Visualisierungsinstitutes der Universität Stuttgart haben nun im Rahmen des Sonderforschungsbereiches (SFB) 716 ein Verfahren entwickelt, das die Qualität virtueller Bilder erheblich verbessert und gleichzeitig schnell genug ist, um komplexe, dynamische Simulationen effizient auf handelsüblichen Computern zu analysieren. Hierzu machen sie sich eine Beleuchtungs-Methodik zu Nutze, die von Computerspielen bekannt ist. Wann bricht Metall unter mechanischen oder thermischen Belastungen? Unter welchen Bedingungen binden sich Fette an Waschmittel? Wann nutzen sich Verschleißteile einer hydraulischen Maschine ab? Simulationen ermöglichen es, diese Fragen zu beantworten... mehr mehr lesen

Kleinere, leichtere, leisere und zugleich leistungsfähigere Motoren: Mit ihrer europaweit herausragenden Simulationstechnik und Expertise sind Kasseler Wissenschaftler vor allem die Minimierung der Reibungsverluste in Motor und Getriebe auf der Spur.

Aus relativ kleinvolumigen Motoren holen die Ingenieure immer mehr Leistung heraus. Gleichzeitig spritzen die Pumpen von Benzin- und Dieselaggregaten in Common-Rail-Technik mit immens hohem Druck den Kraftstoff in die Brennkammern. Die Leistungssteigerung hat jedoch eine Kehrseite: Die Antriebe sind hohem Stress und Verschleißgefahr ausgesetzt. Eine Schlüsselrolle kommt dabei der Reibung der bewegten Teile untereinander in Motor und Getriebe zu. Ihr sind die Wissenschaftler des Fachgebiets Maschinenelemente und Tribologie mit ausgefeilten Simulationsprogrammen auf der Spur. „Unsere Vision ist die Verminderung der mechanischen Reibungsverluste im Motor um 30 Prozent. Das würde den Normverbrauch... mehr mehr lesen

Autos werden heute am Computer entwickelt. Designer wünschen sich dafür Verfahren, die real wirkende Oberflächen wie Sitzbezüge erzeugen. Forscher haben jetzt hochauflösende Scanner entwickelt, die Objekte und Stoffmuster in Minuten ablichten und in virtuelle Modelle wandeln. Verblüffend sind die realistischen Lichteffekte.

Beim Autokauf achten Kunden nicht nur auf den Verbrauch, sondern vor allem auf das Aussehen. Hochwertig soll die Innenausstattung wirken, dezent das Muster der Sitzbezüge und edel die Lederoptik des Armaturenbretts. Designer wollen deshalb schon früh wissen, wie ein Stoff oder ein Lederimitat im neuen Auto-Cockpit wirken. Früher fertigte man Modelle an, doch das war zeitraubend. Schneller ist die Simulation am Computer, allerdings kostet auch das Zeit. Denn zuerst muss man die realen Objekte fein aufgelöst einscannen und in die virtuelle Welt übertragen. Forscher vom Fraunhofer-Institut für Graphische Datenverarbeitung IGD in Darmstadt wollen diesen Prozess jetzt beschleunigen. Sie haben... mehr mehr lesen

MIT simulation accurately reconstructs pipe fractures formed in the 2010 Deepwater Horizon accident.

A computer model that tests automobile components for crashworthiness could also be of use to the oil and gas industry, according to researchers at MIT’s Impact and Crashworthiness Laboratory, who are now using their simulations of material deformation in car crashes to predict how pipes may fracture in offshore drilling accidents. As a case study, the team simulated the forces involved in the 2010 Deepwater Horizon explosion in the Gulf of Mexico, finding that their model accurately predicted the location and propagation of cracks in the oil rig’s drill riser — the portion of pipe connecting the surface drilling platform to the seafloor. In a side-by-side comparison, the researchers... mehr mehr lesen

MaterialsgateNEWSLETTER

Partner der Woche

Suche in MaterialsgateNEWS

Bücher und Produkte

MaterialsgateANSWERS

MaterialsgateFAIR:
LASSEN SIE SICH INSPIRIEREN