MMaterialsgateNEWS vom 30.06.2016

3D Druck ermöglicht kleinste komplexe Mikro-Objektive

3D Druck hat in den letzten Jahren die Herstellung von komplizierten Formen revolutioniert. Mithilfe von serieller Auftragung, bei der Punkt für Punkt oder Linie für Linie geschrieben wird, könnten auch die komplexesten Bauteile schnell und einfach realisiert werden.

Diese Methode steht jetzt auch für optische Bauteile zur Verfügung: Forscher der Universität Stuttgart haben einen Kurzpulslaser in Kombination mit optischem Fotolack benutzt, um optische Linsen herzustellen, die kaum größer sind als ein menschliches Haar.

Dabei wird der Femtosekundenlaser, der eine Pulsdauer von weniger als 100 Femtosekunden besitzt, mithilfe eines Mikroskops in einen flüssigen Fotolack fokussiert, der vorher zum Beispiel auf einem Glasplättchen oder auf einer Glasfaser aufgebracht wurde. Zwei Photonen des roten Laserstrahls mit der Wellenlänge 785 nm werden im Brennpunkt gleichzeitig absorbiert und belichten ihn. Dadurch härtet der Fotolack.

Der Laserstrahl kann mit einem Scanner oder durch Verfahren des Substrates in alle drei Raumrichtungen die gewünschte Form abfahren, die hergestellt werden soll. Dadurch lassen sich mit einer Submikrometer-Genauigkeit optische Freiformflächen herstellen. Die große Präzision erlaubt es, nicht nur kugelförmige Linsen herzustellen, sondern auch die idealeren Flächen wie Paraboloide oder Asphären höherer Ordnung. Auch mehrlinsige Objektive für Abbildungen in höchster Qualität werden erstmals möglich.

Doktorand Timo Gissibl aus der Arbeitsgruppe von Prof. Harald Giessen am 4. Physikalischen Institut druckte solche Mikroobjektive auch auf Glasfasern. Damit lassen sich ganz neuartige und kleinste flexible Endoskope verwirklichen, die dazu geeignet sind, auch in kleinste Öffnungen des Körpers oder in Maschinen Untersuchungen vorzunehmen. Das Optikdesign, also der Bauplan dazu, stammte im Rahmen einer Zusammenarbeit im Stuttgarter Zentrum für Photonic Engineering (SCoPE) vom Doktoranden Simon Thiele aus der Arbeitsgruppe von Prof. Alois Herkommer am Institut für Technische Optik.

Gissibl druckte seine optischen Freiformflächen und seine Miniatur-Mikroskop-Objektive auch direkt auf CMOS-Chips, die somit einen extrem kompakten Sensor darstellten. Mit einer solchen Optik könnten Kameras für Drohnen realisiert werden, die nicht viel größer als eine Biene wären, oder auch kleinste Sensoren für selbstfahrende Autos, autonome Roboter oder für Maschinen der Industrie 4.0. Auch kleinste Körpersensoren und Rundum-Kameras für Handys sind vorstellbar.

Die Forscher konnten ihre Optiken auch mit Beleuchtungssystemen kombinieren. Dadurch kann die Optik einer LED, die das Licht in eine bestimmt Richtung konzentriert, extrem verkleinert werden. Die Stuttgarter Forscher glauben, dass mithilfe des 3D Drucks eine ganz neue Ära in der Fertigung von Miniaturoptiken anbricht. „Der Zeitraum von der Idee über das Optikdesign zum CAD-Modell und zum fertigen, gedruckten 3D Mikro-Objektiv verkürzt sich auf unter einen Tag“ sagt Prof. Harald Giessen. „Damit eröffnen wir ähnliche Möglichkeiten, wie sie seit einigen Jahren beim Computer-Integrated Manufacturing im Maschinenbau und in der Metallverarbeitung bestehen.“

Das Projekt, das im Rahmen der „Spitzenforschungs-Initiative“ der Baden-Württemberg-Stiftung gefördert wurde, arbeitet eng mit der Industrie zusammen. Das Startup-Unternehmen Nanoscribe, eine Ausgründung des Karlsruher Instituts für Technologie (KIT) in Karlsruhe, baut die hochpräzisen 3D Drucker mit integriertem Femtosekunden-Laser. Die Firma Carl Zeiss aus Oberkochen berät die Forscher in allen Fragen der Optik. Und die Weltmarktführer im Bereich der Endoskopie sitzen ebenfalls in Baden-Württemberg.

Quelle: Universität Stuttgart - 28.06.2016.

Referenzen:

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen: Two-photon direct laser writing of ultracompact multi-lens objectives, Nature Photonics 10 (2016).DOI: 10.1038/NPHOTON.2016.121

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen: Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres, Nature Communications 7, 11763 (2016).

S. Thiele, T. Gissibl, H. Giessen, and A. Herkommer: Ultra-compact on-chip LED collimation optics by 3D-printing, Opt. Lett. 41, 3029 (2016).

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

Lawrence Livermore National Laboratory (LLNL) material scientists have found that 3D-printed foam works better than standard cellular materials in terms of durability and long-term mechanical performance.

Foams, also known as cellular solids, are an important class of materials with applications ranging from thermal insulation and shock-absorbing support cushions to lightweight structural and floatation components. Such material is an essential component in a large number of industries, including automotive, aerospace, electronics, marine, biomedical, packaging and defense. Traditionally, foams are created by processes that lead to a highly non-uniform structure with significant dispersion in size, shape, thickness, connectedness and topology of its constituent cells. As an improved alternative, scientists at the additive manufacturing lab at LLNL recently demonstrated the feasibility of... mehr mehr lesen

Kompliziertes „einfach“ drucken: Forscher der Professur Elektrische Energiewandlungssysteme und Antriebe der TU Chemnitz wollen komplexe Bauteile besonders preisgünstig herstellen

Johannes Rudolph und Fabian Lorenz blicken im Labor der Professur Elektrische Energiewandlungssysteme und Antriebe der Technischen Universität Chemnitz voller Stolz auf einen unscheinbaren Eisenring. Das fünf Zentimeter große Teil, das in einem Elektromotor als Magnetkreis fungieren soll, wurde in einem von ihnen entwickelten 3D-Druckverfahren gefertigt. „Unser 3D-Drucker besteht zu einem großen Teil auf Standardbauteilen - wir haben das Fahrrad also nicht völlig neu erfunden, sondern bereits bekannte additive Technologien kombiniert und modifiziert“, erläutert Rudolph. Gedruckt werde mit einer speziell hergestellten neuartigen Paste, die aus feinem Metall- oder Keramikpulver und... mehr mehr lesen

Forscher der ETH Zürich und des ETH-Spin-offs Scrona können sich bei Guinness World Records Limited eintragen lassen: Sie haben das kleinste Inkjet-Farbbild der Welt gedruckt. Diesen Rekord erzielten sie mit einer neuen 3D-Nanodruck-Technologie, die an der ETH Zürich entwickelt wurde und von Scrona kommerzialisiert wird.

Das ausgedruckte Bild misst gerade mal 0,0092 Quadratmillimeter und hat Seitenlängen von 80 respektive 115 Mikrometern. Dies entspricht der Schnittfläche eines menschlichen Haares oder der Grösse eines einzelnen Pixels eines Retina-Bildschirms von Apple. «Dieses Bild ist so winzig, dass es von blossem Auge nicht mehr sichtbar ist», sagt der ehemalige ETH-Forscher und Scrona-Mitgründer Patrick Galliker, der bei Professor Dimos Poulikakos doktorierte und noch immer mit dessen Institut assoziiert ist. Damit unabhängige, von Guinness World Records Limited verifizierte Experten das Mikrobild sehen konnten, mussten sie ein spezielles Mikroskop verwenden. Bild auf Querschnitt eines Haars... mehr mehr lesen

Nachwuchswissenschaftler vom Lehrstuhl für Fluidtechnik und Mikrofluidtechnik entwickelt Verfahren für kostengünstigen Metalldruck

Noch handelt es sich bei den meisten Metall-3D-Druckern um kostenintensive laserbasierte Anlagen, doch alternative Verfahren sind in der Erprobung und sollen den Druck komplexer und gebrauchsfähiger Teile wirtschaftlicher machen. Ziel des Nachwuchswissenschaftlers Clemens Lieberwirth von der Universität Rostock ist es, Metallbauteile auf kostengünstige Weise mittels 3D-Druck herzustellen. Im Rahmen eines vom Bundesministerium für Wirtschaft und Energie geförderten Drittmittelprojekts entwickelt Lieberwirth dafür einen neuartigen Fertigungsprozess, das so genannte Composite Extrusion Modeling (CEM) Verfahren. Am Anfang stand bei Clemens Lieberwirth die Vision, einen Metalldrucker zu... mehr mehr lesen

MaterialsgateNEWSLETTER

Partner der Woche

Suche in MaterialsgateNEWS

MaterialsgateANSWERS

MaterialsgateFAIR:
LASSEN SIE SICH INSPIRIEREN