MMaterialsgateNEWS vom 24.02.2015

Verwandte MaterialsgateCARDS

Fever alarm armband: A wearable, printable, temperature sensor

University of Tokyo researchers have developed a "fever alarm armband," a flexible, self-powered wearable device that sounds an alarm in case of high body temperature.

This armband will be presented at the 2015 IEEE International Solid State Circuits Conference, San Francisco, on 22-26 February, 2015. The flexible organic components developed for this device are well-suited to wearable devices that continuously monitor vital signs including temperature and heart rate for applications in healthcare settings.

The new device developed by research groups lead by Professor Takayasu Sakurai at the Institute of Industrial Science and Professor Takao Someya at the Graduate School of Engineering combines a flexible amorphous silicon solar panel, piezoelectric speaker, temperature sensor, and power supply circuit created with organic components in a single flexible, wearable package.

Constant monitoring of health indicators such as heart rate and body temperature is the focus of intense interest in the fields of infant, elderly and patient care. Sensors for such applications need to be flexible and wireless for patient comfort, maintenance-free and not requiring external energy supply, and cheap enough to permit disposable use to ensure hygiene. Conventional sensors based on rigid components are unable to meet these requirements, so the researchers have developed a flexible solution that incorporates organic components that can be printed by an inkjet printer on a polymeric film.

The fever alarm armband incorporates several first-ever achievements. It is the first organic circuit able to produce a sound output, and the first to incorporate an organic power supply circuit. The former enables the device to provide audible information when the flexible thermal sensor detects a pre-set value within the ranges of 36.5 ºC to 38.5 ºC, while the latter increases the range of operational illumination by 7.3 times in indoor lighting conditions.

"Our fever alarm armband demonstrates that it is possible to produce flexible, disposable devices that can greatly enhance the amount of information available to carers in healthcare settings," says Professor Someya. "We have demonstrated the technology with a temperature sensor and fever alarm, but the system could also be adapted to provide audible feedback on body temperature, or combined with other sensors to register wetness, pressure or heart rate."

Source: University of Tokyo – 22.02.2015.

Journal article:

Hiroshi Fuketa, Masamune Hamamatsu, Tomoyuki Yokota, Wakako Yukita, Teruki Someya, Tsuyoshi Sekitani, Makoto Takamiya, Takao Someya, and Takayasu Sakurai "Energy Autonomous Fever Alarm Armband Integrating Fully Flexible Solar Cells, Piezoelectric Speaker, Temperature Detector, and 12V Organic Complementary FET Circuits." Paper to be presented at the 2015 IEEE International Solid State Circuits Conference San Francisco 22-26 February, 2015

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

Researchers from North Carolina State University have developed a new, wearable sensor that uses silver nanowires to monitor electrophysiological signals, such as electrocardiography (EKG) or electromyography (EMG). The new sensor is as accurate as the "wet electrode" sensors used in hospitals, but can be used for long-term monitoring and is more accurate than existing sensors when a patient is moving.

Long-term monitoring of electrophysiological signals can be used to track patient health or assist in medical research, and may also be used in the development of new powered prosthetics that respond to a patient's muscular signals. Electrophysiological sensors used in hospitals, such as EKGs, use wet electrodes that rely on an electrolytic gel between the sensor and the patient's skin to improve the sensor's ability to pick up the body's electrical signals. However, this technology poses problems for long-term monitoring, because the gel dries up - irritating the patient's skin and making the sensor less accurate. The new nanowire sensor is comparable to the wet... mehr mehr lesen

Future fitness trackers could soon add blood-oxygen levels to the list of vital signs measured with new technology developed by engineers at UC Berkeley.

“There are various pulse oximeters already on the market that measure pulse rate and blood-oxygen saturation levels, but those devices use rigid conventional electronics, and they are usually fixed to the fingers or earlobe,” said Ana Arias, an associate professor of electrical engineering and computer sciences and head of the UC Berkeley team that is developing a new organic optoelectronic sensor. By switching from silicon to an organic, or carbon-based, design, the researchers were able to create a device that could ultimately be thin, cheap and flexible enough to be slapped on like a Band-Aid during that jog around the track or hike up the hill. The engineers put the new prototype... mehr mehr lesen

An ultrasensitive biosensor made from the wonder material graphene has been used to detect molecules that indicate an increased risk of developing cancer.

The biosensor has been shown to be more than five times more sensitive than bioassay tests currently in use, and was able to provide results in a matter of minutes, opening up the possibility of a rapid, point-of-care diagnostic tool for patients. The biosensor has been presented today, 19 September, in IOP Publishing's journal 2D Materials. To develop a viable bionsensor, the researchers, from the University of Swansea, had to create patterned graphene devices using a large substrate area, which was not possible using the traditional exfoliation technique where layers of graphene are stripped from graphite. Instead, they grew graphene onto a silicon carbide substrate under extremely... mehr mehr lesen

Integrierte Miniatursensoren messen Aktivität im Arbeitsalltag und weisen auf kritische Bewegungsmuster hin – Testeinsatz bei Schweißern und Sanitätern – BMBF fördert Verbundprojekt „SIRKA“ mit einer Million Euro

Stark belastende Bewegungsabläufe in körperlich anstrengenden Berufen bergen ein erhebliches Risiko für Muskel-Skelett-Erkrankungen, die sich vor allem in der zweiten Lebenshälfte bemerkbar machen. Mit der Entwicklung eines Sensoranzuges soll das jetzt gestartete Forschungsvorhaben SIRKA („Sensoranzug zur individuellen Rückmeldung körperlicher Aktivität“) helfen, Überbelastungen zu erkennen und alternative Bewegungsmuster aufzuzeigen. Die Idee: Integrierte Miniatursensoren messen die Bewegungen seines Trägers und weisen unmittelbar auf schädigende Bewegungen hin. Den Anzug testet das Entwicklerteam um die Münsteraner Firma Budelmann Elektronik beispielhaft für den Einsatz bei... mehr mehr lesen


Partner der Woche

Suche in MaterialsgateNEWS

Bücher und Produkte