MMaterialsgateNEWS vom 26.10.2009

The lotus's clever way of staying dry

An ancient Confucian philosopher once said, "I love the lotus because while growing from mud, it is unstained."

Now, almost one thousand years since Zhou Dunyi wrote these lines in China, scientists finally understand how the plant keeps itself clean and dry. It took an ultra high speed camera, a powerful microscope and an audio speaker to unlock a secret that has puzzled scientists for ages.

The process of solving this biological problem inspired Duke University engineers to make use of man-made surfaces resembling the lotus to improve the efficiency of modern engineering systems, such as power plants or electronic equipment, which must be cooled by removing heat through water evaporation and condensation.

For the first time, scientists were able to observe water as it condensed on the leaf's surface, and more importantly, how the water condensate left the leaf.

The trick lies in the surface of the plant's large leaves, and the subtle vibrations of nature. The leaves are covered with tiny irregular bumps spiked with even tinier hairs projecting upward. When a water droplet lands on this type of surface, it only touches the ends of the tiny hairs. The droplet is buoyed by air pockets below and ultimately is repelled off the leaf.

"We faced a tricky problem – water droplets that fall on the leaf easily roll off, while condensate that grows from within the leaf's nooks and crannies is sticky and remains trapped," said Jonathan Boreyko, a third-year graduate student at Duke's Pratt School of Engineering, who works in the laboratory of assistant professor Chuan-Hua Chen. The results of the team's experiments were published early on-line in the journal Physics Review Letters.

"Scientists and engineers have long wondered how these sticky drops are eventually repelled from the leaf after their impalement into the tiny projections," Boreyko said. "After bringing lotus leaves into the lab and watching the condensation as it formed, we were able to see how the sticky drops became unsticky."

The key was videotaping the process while the lotus leaf rested on top of the woofer portion of a stereo speaker at low frequency. Condensation was created by cooling the leaf. It turned out that after being gently vibrated for a fraction of a second, the sticky droplets gradually unstuck themselves and jumped off the leaf.

Voila, a dry leaf.

"This solves a long-standing puzzle in the field," Chen said. "People have observed that condensation forms every night on the lotus leaf. When they come back in the morning the water is gone and the leaf is dry. The speaker reproduced in the lab what happens every day in nature, which is full of subtle vibrations, especially for the lotus, which has large leaves atop long and slender stems."

The results of these experiments, as well as earlier ones showing for the first time that water droplets spontaneously "jump" off a highly water-repellent, or superhydrophobic, surface, will allow engineers to employ man-made surfaces much like the lotus leaf in settings where the removal of condensation and the transfer of heat are necessary.

We have revealed the physics behind anti-dew superhydrophobicity, a vital property for water-repellent materials to be deployed in the real world," Chen said. "These materials will be used in humid or cold environments where condensation will naturally occur. Our findings point to a new direction to develop water-repellent materials that would survive in demanding natural environments, and have strong implications for a variety of engineering applications including non-sticking textiles, self-cleaning optics and drag-reducing hulls."

Source: Duke University – 22.10.2009.

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

A plant that lives along muddy waterways in Asia has inspired a NASA team to develop a special coating to prevent dirt and even bacteria from sticking to and contaminating the surfaces of spaceflight gear.

Researchers at NASA's Goddard Space Flight Center in Greenbelt, Md., are developing a transparent coating that prevents dirt from sticking in the same way a lotus plant sheds water — work begun through collaboration with Northrop Grumman Electronics Systems, Linthicum, Md., and nGimat Corporation, Atlanta, Ga. Although a lotus leaf appears smooth, under a microscope, its surface contains innumerable tiny spikes that greatly reduce the area on which water and dirt can attach. "If you splash lotus leaves with water, it just beads up and rolls off, indicating they have a special hydrophobic or water-repelling ability," said Eve Wooldridge, the James Webb Space Telescope (JWST... mehr mehr lesen

Self-cleaning walls, counter tops, fabrics, even micro-robots that can walk on water -- all those things and more could be closer to reality thanks to research recently completed by scientists at the University of Nebraska-Lincoln and at Japan's RIKEN institute.

Humans have marveled for millennia at how water beads up and rolls off flowers, caterpillars and some insects, and how insects like water striders are able to walk effortlessly on water. It's a property called super hydrophobia and it's been examined seriously by scientists since at least the 1930s. "A lot of people study this and engineers especially like the water strider because it can walk on water," said Xiao Cheng Zeng, Ameritas university professor of chemistry at UNL. "Their legs are super hydrophobic and each leg can hold about 15 times their weight. 'Hydrophobic' means water really doesn't like their legs and that's what keeps them on... mehr mehr lesen

Das Fraunhofer IWS hat ein neues Verfahren zur chemischen Dampfphasenabscheidung (AP-CVD) von Oxid-Schichten bei Atmosphärendruck und niedriger Temperatur entwickelt.

Es ermöglicht eine kontinuierliche Großflächenbeschichtung von Bändern ebenso wie von ebenen Blechen oder Platten mit photokatalytisch aktiven Titandioxidschichten. Die Schichten können homogen in Schichtdicken zwischen 30 und 1200 nm aufgetragen werden. Vor allem durch die Herabsetzung der Substrattemperatur auf bis 100 °C sind photokatalytische und superhydrophile Eigenschaften nun auch auf temperatursensitiven Materialien wie Polymerfolien umsetzbar. Bei Titandioxidschichten (TiO2) ermöglicht der photokatalytische Effekt Antibeschlageigenschaften, Selbstreinigung oder hydrophob/hydrophil strukturierbare Oberflächen. Klassische Herstellungsverfahren solcher Schichten sind thermische... mehr mehr lesen

Niederdruck-Plasmabehandlung für bessere Waschbeständigkeit

Bei OP-Textilien aus Polyester-Mikrofilamentgewebe im Mehrweg-Einsatz wird die zum Schutz von Patient und Arzt notwendige Barrierewirkung gegenüber Keimen üblicherweise durch Wasser und Öl abweisende Fluorcarbonharz-Ausrüstungen erreicht. Bei der gewerblichen Wiederaufbereitung wird die Funktion dieser hydrophoben Ausrüstung allerdings auch bei ausreichender Fixierung oft stark beeinträchtigt: In erster Linie sind Tensid- und weitere Chemikalienrückstände auf dem textilen Material für das Nachlassen der Barrierewirkung verantwortlich und machen ca. 4 bis 5 Nachrüstungen mit Fluorcarbonharzen im Lebenszyklus des Textils notwendig. Im Rahmen eines AiF-Forschungsprojektes (AiF-Nr... mehr mehr lesen

Nature inspires scientists to treat surfaces in a special way.

A plastic cup that can be reused without washing it, simply because contamination has no chance to stick to the surface? A self-cleaning surface like that of the leaf of a Lotus plant is ideal for many applications and consumer products. These ideal natural properties can be imitated quite well now. Structuring a plastic or other surface is possible by using an ultra fast femtosecond laser. PhD student Max Groenendijk of the Applied Laser Technology Group of the University of Twente presents remarkable results with this new technique. The secret of the Lotus leaf can be found in numerous tiny pillars with a wax layer on top. Water drops are lifted by these pillars, get into a spherical shape... mehr mehr lesen

Partner der Woche

Materialsgate Login