MMaterialsgateNEWS vom 15.09.2014

Verwandte MaterialsgateCARDS

Neues aus der Materialphysik: Einzelne Siliziumatome in Graphen verschoben

Seit einigen Jahren ist es möglich, einzelne Atome mit Hilfe eines Elektronenmikroskops abzubilden. Besonders eindrucksvoll gelingt dies bei Graphen, einer nur ein Atom dicken Schicht aus Kohlenstoffatomen.

Einer Gruppe rund um Toma Susi, Physiker an der Universität Wien, ist es nun in Kooperation mit Teams aus Großbritannien und den USA gelungen, einzelne Siliziumatome im Graphen-Gitter zerstörungsfrei zu bewegen. Aktuell berichten die ForscherInnen im renommierten Journal "Physical Review Letters", wie ihre Experimente mit Hilfe spezialisierter Mikroskopie-Techniken und aufwendiger Computerberechnungen glückten.

Bereits 1959 hat der Physiker Richard Feynman die berühmte Frage gestellt, ob es jemals möglich sein wird, einzelne Atome sehen und sogar bewegen zu können. Lange Zeit galt seine Vision eher als Science Fiction, aber Schritt für Schritt wurde diese Vision durch die moderne Mikroskopie zur Realität im wissenschaftlichen Alltag. Bei solchen Untersuchungen können jedoch manchmal Schäden am erforschten Material entstehen.

High-Tech-Mikroskop ermöglichte Forschungserfolg

In der aktuellen Studie wurde Graphen, eine nur ein Atom dicke Lage aus Kohlenstoffatomen, in die einzelne Siliziumatome eigebettet sind, getestet. Die Siliziumatome ragen aufgrund ihres Größenunterschiedes aus der Ebene der Kohlenstoffatome heraus. "Wir kamen mithilfe detaillierter Computersimulationen zum Schluss, dass das Material durch Beschuss mit Elektronen manipuliert werden kann, ohne dieses zu beschädigen. Dafür haben wir eine Beschleunigungsspannung von 60.000 Volt benötigt", so Toma Susi, Erstautor und FWF-Lise-Meitner-Stipendiat an der Universität Wien: "Voraussetzung für diese High-Tech-Experimente ist ein modernes hochauflösendes Ultra-Hochvakuum-Raster-Transmissionselektronenmikroskop, von denen es derzeit weltweit nur etwa zehn gibt. Die Universität Wien verfügt über ein derartiges Gerät, das mit einer Auflösung von weniger als ein Ångström, das ist ein Zehnmillionstel Millimeter, nahezu alle atomaren Abstände auflösen kann. Damit habe ich meine komplexen Untersuchungen durchgeführt." Das Team in Daresbury (UK) arbeitete ebenfalls mit einem solchen Mikroskop.

Vergleich der Messergebnisse mit Computersimulationen

Die Computerberechnungen haben gezeigt, dass Kohlenstoffatome in unmittelbarer Nachbarschaft der Siliziumatome weniger stark gebunden sind als jene Kohlenstoffatome, die weit entfernt von den Siliziumatomen liegen. Dadurch können die ForscherInnen mit dem Elektronenstrahl ein Nachbaratom eines Siliziumatoms nur gerade soweit aus dem Gitter stoßen, dass das Siliziumatom und das Kohlenstoffatom ihre Plätze tauschen. Dieser Platztausch wurde von beiden Forschungsteams direkt im Elektronenmikroskop beobachtet. Durch Analyse von etwa 40 solcher aufgenommenen Prozesse konnten die ForscherInnen herausfinden, dass es sich bei dem Platztausch um einen stochastischen Prozess handelt und dessen Wahrscheinlichkeit bestimmen. Ein direkter Vergleich der Messergebnisse mit den Computersimulationen zeigte eine beeindruckende Übereinstimmung.

Elektronenstrahl steuert Platzwechsel der Siliziumatome
Neben der Bedeutung für die Physik eröffnen diese Ergebnisse sehr vielversprechende Möglichkeiten für die gezielte Erzeugung von Strukturen aus einzelnen Atomen. "Was unsere Ergebnisse wahrlich beeindruckend macht, ist, dass dieser Platzwechselprozess steuerbar ist, da das Siliziumatom immer an die Stelle, die vom Elektronenstrahl getroffen wird, springt", so Toma Susi, Physiker an der Universität Wien. "Das ermöglicht uns, die Bewegung jedes einzelnen Siliziumatoms auf das Genaueste zu steuern. Vielleicht sehen wir bald neue Quantenstrukturen oder das Logo einer Universität – geschrieben aus Siliziumatomen in Graphen."

Quelle: Universität Wien - 12.09.2014.

Publikation in Physical Review Letters:

Silicon-carbon bond inversions driven by 60 keV electrons in graphene: T. Susi, J. Kotakoski, D. Kepaptsoglou, C. Mangler, T.C. Lovejoy, O.L. Krivanek, R. Zan, U. Bangert, P. Ayala, J.C. Meyer & Q. Ramasse. Physical Review Letters, August 2014, DOI: 10.1103/PhysRevLett.113.115501

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

A flexible display incorporating graphene in its pixels’ electronics has been successfully demonstrated by the Cambridge Graphene Centre and Plastic Logic, the first time graphene has been used in a transistor-based flexible device.

The partnership between the two organisations combines the graphene expertise of the Cambridge Graphene Centre (CGC), with the transistor and display processing steps that Plastic Logic has already developed for flexible electronics. This prototype is a first example of how the partnership will accelerate the commercial development of graphene, and is a first step towards the wider implementation of graphene and graphene-like materials into flexible electronics. Graphene is a two-dimensional material made up of sheets of carbon atoms. It is among the strongest, most lightweight and flexible materials known, and has the potential to revolutionise industries from healthcare to electronics... mehr mehr lesen

Writing in Nature Nanotechnology, the researchers have demonstrated how combining the two-dimensional materials in a stack could create perfect crystals capable of being used in next generation transistors.

Hexagonal boron nitride (hBN), otherwise known as white graphene, is one of a family of two-dimension materials discovered in the wake of the isolation of graphene at the University in 2004. Manchester researchers have previously demonstrated how combining 2D materials, in stacks called heterostructures, could lead to materials capable of being designed to meet industrial demands. Now, for the first time, the team has demonstrated that the electronic behaviour of the heterostructures can be changed enormously by precisely controlling the orientation of the crystalline layers within the stacks. The researchers, led by University of Manchester Nobel laureate Sir Kostya Novoselov, carefully... mehr mehr lesen

Although body motion sensors already exist in different forms, they have not been widely used due to their complexity and cost of production.

Now researchers from the University of Surrey and Trinity College Dublin have for the first time treated common elastic bands with graphene, to create a flexible sensor that is sensitive enough for medical use and can be made cheaply. Once treated, the rubber bands remain highly pliable. By fusing this material with graphene - which imparts an electromechanical response on movement – the team discovered that the material can be used as a sensor to measure a patient's breathing, heart rate or movement, alerting doctors to any irregularities. "Until now, no such sensor has been produced that meets needs and that can be easily made. It sounds like a simple concept, but our graphene... mehr mehr lesen

Using graphene ribbons of unimaginably small widths – just several atoms across – a group of researchers at the University of Wisconsin-Milwaukee (UWM) has found a novel way to "tune" the wonder material, causing the extremely efficient conductor of electricity to act as a semiconductor.

In principle, their method for producing these narrow ribbons – at a width roughly equal to the diameter of a strand of human DNA – and manipulating the ribbons' electrical conductivity could be used to produce nano-devices. Graphene, a one-atom-thick sheet of carbon atoms, is touted for its high potential to yield devices at nanoscale and deliver computing at quantum speed. But before it can be applied to nanotechnology, researchers must first find an easy method of controlling the flow of electrons in order to devise even a simple on-off switch. "Nano-ribbons are model systems for studying nanoscale effects in graphene, but obtaining a ribbon width below 10 nanometers and... mehr mehr lesen

MaterialsgateNEWSLETTER

Partner der Woche

Suche in MaterialsgateNEWS

Bücher und Produkte

MaterialsgateANSWERS

MaterialsgateFAIR:
LASSEN SIE SICH INSPIRIEREN