MMaterialsgateNEWS vom 22.07.2016

Graphen von der Rolle: Serienfertigung von Elektronik aus 2D-Nanomaterialien

Graphen, Kohlenstoff in zweidimensionaler Struktur, wird seit seiner Entdeckung im Jahr 2004 als ein möglicher Werkstoff der Zukunft gehandelt: Sein geringes Gewicht, die extreme Festigkeit, vor allem aber seine hohe thermische und elektrische Leitfähigkeit wecken Hoffnungen, Graphen bald für vollkommen neue Geräte und Technologien einsetzen zu können.

Einen ersten Schritt gehen jetzt die Forscher im EU-Forschungsprojekt »HEA2D«: Ziel ist es, das 2D-Nanomaterial von einer Kupferfolie durch ein Rolle-zu-Rolle-Verfahren auf Kunststofffolien und -bauteile zu übertragen. Auf diese Weise soll eine Serienfertigung elektronischer und opto-elektronischer Komponenten auf Graphenbasis möglich werden.

Besonders interessiert an hochleistungsfähiger Elektronik aus 2D-Materialien ist die Automobilindustrie, die diese in Schaltern mit transparenten Leiterbahnen, Symbolbeleuchtung oder Tageslichtsensoren einsetzen könnte. Aber auch in der Energieerzeugung und -speicherung sowie in der Medizintechnik finden sich Anwendungsfelder für graphenbeschichtete Folien und Bauteile.

Die Partner im Forschungsprojekt »HEA2D« entwickeln deshalb eine durchgängige Verarbeitungskette, die verschiedene Abscheideverfahren von 2D-Materialien auf Metallsubstrate, Verfahren für den Transfer auf Polymerfolien sowie die serientaugliche Übertragung auf Kunststoff-Spritzguss-Bauteile umfasst.

Um die 2D-Materialien, die durch chemische Gasphasenabscheidung (CVD, Chemical Vapor Deposition) bereits großflächig auf Kupferfolie hergestellt werden können, für die Weiterverarbeitung im Spritzgussverfahren nutzbar zu machen, erforscht das Fraunhofer IPT die Übertragung auf Kunststofffolien. Für den ressourceneffizienten und gleichzeitig kostenünstigen Transfer der zweidimensionalen Graphenschichten auf die Polymerfolien setzen die Aachener Forscher auf ein neues Rolle-zu-Rolle-Anlagenkonzept. Hier kommen verschiedene technische Verfahren wie der Schlitzdüsenauftrag flüssiger Polymere mit In-situ-Vernetzung oder das Laminieren von Transferfolien in Frage. Beide Alternativen untersucht das Fraunhofer IPT gemeinsam mit der Coatema Coating Machinery GmbH. Die Graphen-Proben für die Versuche werden von der Universität Duisburg-Essen bereitgestellt.

Die Qualität des Transferprozesses und des Graphens analysieren und bewerten Forscher der Universitäten Siegen und Duisburg-Essen, die ebenfalls am Projekt mitwirken. Auf der Basis der experimentellen Untersuchungen soll dann ein vollständiges Anlagenkonzept zum effizienten Transfer von Graphen auf Polymer-Substrate erarbeitet werden.

Als Ergebnis des Projekts soll am Ende eine durchgängige Prozesskette zur Herstellung graphenbeschichteter Bauteile stehen. Diese reicht von der Simulation des CVD-Wachstums von Graphen über die kontinuierliche Abscheidung auf großflächige Metallsubstrate im Rolle-zu-Rolle-Verfahren bis zum Transfer des abgeschiedenen Materials auf Polymerfolien und zur Integration der Folien in Kunststoffkomponenten durch Spritzgieß- und Heißprägeverfahren. Die Entwicklungen zum letzten Prozessschritt werden mithilfe des Kunststoff-Instituts Lüdenscheid durchgeführt.

Die Leistungsfähigkeit der neuen Prozesskette soll abschließend anhand ausgewählter Prototypen, einer Folientastatur sowie Tageslichtsensoren, Photodetektoren und Symbolbeleuchtungselementen auf Folie, validiert werden.

Partner im Projekt »HEA2D – Herstellung, Eigenschaften und Anwendungen von 2D-Nanomaterialien«:

- Aixtron SE, Herzogenrath (Konsortialführung)
- Fraunhofer-Institut für Produktionstechnologie IPT, Aachen
- Universität Siegen
- Universität Duisburg-Essen
- Coatema Coating Machinery GmbH, Dormagen
- Kunststoff-Institut für mittelständische Wirtschaft NRW GmbH (K.I.M.W), Lüdenscheid

Das Forschungsprojekt »HEA2D – Herstellung, Eigenschaften und Anwendungen von 2D-Nanomaterialien« wird durch Mittel des Europäischen Fonds für regionale Entwicklung (EFRE) 2014-2020 gefördert.

Quelle: Fraunhofer-Institut für Produktionstechnologie IPT - 20.07.2016.

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

Rice University shows toughened material is easier to handle, useful for electronics

Nanoscale “rivets” give graphene qualities that may speed the wonder material’s adoption in products like flexible, transparent electronics, according to researchers at Rice University. The Rice lab of chemist James Tour reported the creation of “rivet graphene,” two-dimensional carbon that incorporates carbon nanotubes for strength and carbon spheres that encase iron nanoparticles, which enhance both the material’s portability and its electronic properties. The material is the subject of a paper in the American Chemical Society journal ACS Nano. Until now, researchers have had to transfer graphene grown via chemical vapor deposition with a polymer layer to keep it from wrinkling... mehr mehr lesen

New nanomaterial conducts differently at right angles

Graphene, a two-dimensional wonder-material composed of a single layer of carbon atoms linked in a hexagonal chicken-wire pattern, has attracted intense interest for its phenomenal ability to conduct electricity. Now University of Illinois at Chicago researchers have used rod-shaped bacteria - precisely aligned in an electric field, then vacuum-shrunk under a graphene sheet - to introduce nanoscale ripples in the material, causing it to conduct electrons differently in perpendicular directions. The resulting material, sort of a graphene nano-corduroy, can be applied to a silicon chip and may add to graphene's almost limitless potential in electronics and nanotechnology. The finding... mehr mehr lesen

Researchers from the University of Illinois at Urbana-Champaign have demonstrated doping-induced tunable wetting and adhesion of graphene, revealing new and unique opportunities for advanced coating materials and transducers.

"Our study suggests for the first time that the doping-induced modulation of the charge carrier density in graphene influences its wettability and adhesion," explained SungWoo Nam, an assistant professor in the Department of Mechanical Science and Engineering at Illinois. "This work investigates this new doping-induced tunable wetting phenomena which is unique to graphene and potentially other 2D materials in complementary theoretical and experimental investigations." Graphene, being optically transparent and possessing superior electrical and mechanical properties, can revolutionize the fields of surface coatings and electrowetting displays, according to the researchers... mehr mehr lesen

Researchers from the Tata Institute of Fundamental Research, Mumbai, have demonstrated the ability to manipulate the vibrations of a drum of nanometre scale thickness - realizing the world's smallest and most versatile drum.

This work has implications in improving the sensitivity of small detectors of mass - very important in detecting the mass of small molecules like viruses. This also opens the doors to probing exciting new aspects of fundamental physics. The work, recently published in the journal Nature Nanotechnology, made use of graphene, a one-atom thick wonder material, to fabricate drums that have highly tunable mechanical frequencies and coupling between various modes. Coupling between the modes was shown to be controllable which led to the creation of new, hybrid modes and, further, allowed amplification of the vibrations. The experiment consisted of studying the mechanical vibrational modes, or... mehr mehr lesen

MaterialsgateNEWSLETTER

Partner der Woche

Suche in MaterialsgateNEWS

MaterialsgateANSWERS

MaterialsgateFAIR:
LASSEN SIE SICH INSPIRIEREN