MMaterialsgateNEWS vom 09.03.2015

Electronics: New flexible films for touch screen applications achieve longer lasting display

Today, touch screens are everywhere, from smart phones and tablets, to computer monitors, to interactive digital signage and displays.

Many touch screens are made of layered thin (billionths of a meter thick) films of indium-tin oxide, an inorganic material that is electrically conductive, which allows electrical signals to travel from the "touch" to the edges of the display, where they are sensed by the device--as well as optically transparent.

But these and other inorganic materials have a downside, as anyone who has ever dropped their smart phone knows: they are brittle and shatter easily. The solution? Make the screens flexible and durable without sacrificing any of their electrical or optical properties. A paper in the latest issue of The Optical Society (OSA) journal Optical Materials Express describes a new type of thin film that achieves just that.

The paper by polymer scientists Soo-Young Park and A-Ra Cho of Kyungpook National University in Daegu, South Korea, describes a method to create a type of so-called "hybrid" film, composed of both inorganic and organic materials.

A process known as the sol-gel fabrication technique can create hybrid films-- but it, too, is less than ideal, because it requires the use of acids that corrode the metals and metal oxides in the devices' electronic components. "Therefore," said Park, "acid-free methods of synthesizing organic-inorganic hybrid materials are needed for optical thin-film applications."

Park and Cho start with a co-polymer composed of two organic materials, methyl methacrylate and 3-(trimethoxysilyl) propyl methacrylate, which are combined with another chemical called trialkoxysilane. This co-polymer is then reacted with two inorganic chemicals, titanium isopropoxide and tetraethyl orthosilicate, to synthesize hybrid layers with high (1.82) and low (1.44) refractive indexes.

The refractive index is a measure of the extent to which light is bent as it passes through the material. Most transparent materials have indexes that fall between one and two. Inorganic thin-layer and hybrid films alike have layers with different refractive indexes to help tune the wavelengths of light that pass through the film (or touch screen).

Tests of the new hybrid films indicate that both the high and low refractive index layers are highly transparent--with transparencies of 96 percent and 100 percent, respectively, when compared to bare glass.

The new hybrid materials are produced entirely in solution, at low temperatures, and without the need for high-vacuum (i.e., very low-pressure) conditions, which significantly reduces production costs. In addition, the process allows for the creation of multilayered films in which the layers have thicknesses that would allow the films to be used for anti-reflective coatings, opening the door to potential new applications.

The hybrid films showed less depreciation in flexibility after 10,000 bending cycles than the inorganic layered films. Resistance of a material increases because of the formation of minute cracks as it flexes--just as it would when used in a flexible display screen. A film with higher resistance has lower electrical conductivity, meaning that more voltage must be applied to send a signal through it, which further degrades the material.

"The resistance increases less over time in the hybrid thin-layer film, so a display made from this type of film will last longer," Park said.

Source: The Optical Society – 05.03.2015.

Paper:

Cho and S. Park, "Synthesis of titania- and silica-polymer hybrid materials and their application as refractive index-matched layers in touch screens," Opt. Mater. Express 5, 690-703 (2015).

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

What if the touchscreen of your smartphone or tablet could touch you back? What if touch was as integrated into our ubiquitous technology as sight and sound?

Northwestern University and Carnegie Mellon University researchers now report a fascinating discovery that provides insight into how the brain makes sense of data from fingers. In a study of people drawing their fingers over a flat surface that has two "virtual bumps," the research team is the first to find that, under certain circumstances, the subjects feel only one bump when there really are two. Better yet, the researchers can explain why the brain comes to this conclusion. Their new mathematical model and experimental results on "haptic illusions" could one day lead to flat-screen displays featuring active touch-back technology, such as making your touchscreen's... mehr mehr lesen

Handys und Smartphones sind den Tragegewohnheiten ihrer Nutzer noch nicht angepasst. Das wird jedem klar, der versucht, sich mit dem Handy in der Hosentasche hinzusetzen: Die Displays der unzähligen Handys und Pods sind starr und geben den anatomischen Formen seiner Träger nicht nach.

Dass die Großen der Branche an biegsamen Displays arbeiten, ist mittlerweile kein Geheimnis mehr. Welche Eigenschaften geeignete Beschichtungen dafür haben können, zeigt das INM – Leibniz-Institut für Neue Materialien mit seinen Entwicklungen auf der nano tech 2015 in Tokio, Japan. Dort präsentiert das INM neue Nanopartikel-Tinten, die über einfache Verfahren direkt auf dünne Kunststofffolien aufgedruckt werden können. Per Tiefdruck bilden sich so durchsichtige Bahnen und Strukturen aus, die auch dann noch elektrisch leitend sind, wenn die Folien verformt werden. Für die Nanopartikel-Tinten verwenden die Forscher sogenannte transparente, leitfähige Oxide (TCO, engl.: transparent... mehr mehr lesen

Wenn Nutzer ihre Smartphones, Tablets und Co. bedienen, machen sie sich über die komplizierte Elektronik dahinter keine Gedanken. Hauptsache Wischen und Tippen klappen einwandfrei.

Damit die Touchscreens funktionieren, sind sie auf ihrer Oberfläche mit mikroskopisch kleinen, elektrischen Leiterbahnen versehen, die auf den Druck der Finger Schaltkreise öffnen und schließen. In den Rändern der Geräte laufen diese mikroskopischen Bahnen zu größeren Leiterbahnen zusammen. Bisher mussten sie in mehreren Produktionsstufen erzeugt werden. Die Forscher des INM stellen jetzt ein neues Verfahren vor, das die Herstellung mikroskopischer und makroskopischer Leiterbahnen in einem Schritt ermöglicht. Vom 28. bis 30. Januar präsentieren die Forscher des INM dieses und weitere Ergebnisse im German Pavilion auf der nano tech 2015 in Tokio, Japan. Für das neue Verfahren... mehr mehr lesen

Technology has changed rapidly over the last few years with touch feedback, known as haptics, being used in entertainment, rehabilitation and even surgical training. New research, using ultrasound, has developed an invisible 3D haptic shape that can be seen and felt.

The research paper, published in the current issue of ACM Transactions on Graphics and which will be presented at this week's SIGGRAPH Asia 2014 conference [3-6 December], demonstrates how a method has been created to produce 3D shapes that can be felt in mid-air. The research, led by Dr Ben Long and colleagues Professor Sriram Subramanian, Sue Ann Seah and Tom Carter from the University of Bristol's Department of Computer Science, could change the way 3D shapes are used. The new technology could enable surgeons to explore a CT scan by enabling them to feel a disease, such as a tumour, using haptic feedback. The method uses ultrasound, which is focussed onto hands above the device... mehr mehr lesen

MaterialsgateNEWSLETTER

Partner der Woche

Suche in MaterialsgateNEWS

Bücher und Produkte

MaterialsgateANSWERS

MaterialsgateFAIR:
LASSEN SIE SICH INSPIRIEREN