MMaterialsgateNEWS vom 12.05.2015

Verwandte MaterialsgateCARDS

Graphene holds key to unlocking creation of wearable electronic devices

Ground-breaking research has successfully created the world's first truly electronic textile, using the wonder material Graphene.

An international team of scientists, including Professor Monica Craciun from the University of Exeter, have pioneered a new technique to embed transparent, flexible graphene electrodes into fibres commonly associated with the textile industry.

The discovery could revolutionise the creation of wearable electronic devices, such as clothing containing computers, phones and MP3 players, which are lightweight, durable and easily transportable.

The international collaborative research, which includes experts from the Centre for Graphene Science at the University of Exeter, the Institute for Systems Engineering and Computers, Microsystems and Nanotechnology (INESC-MN) in Lisbon, the Universities of Lisbon and Aveiro in Portugal and the Belgian Textile Research Centre (CenTexBel), is published in the leading scientific journal Scientific Reports.

Professor Craciun, co-author of the research said: "This is a pivotal point in the future of wearable electronic devices. The potential has been there for a number of years, and transparent and flexible electrodes are already widely used in plastics and glass, for example. But this is the first example of a textile electrode being truly embedded in a yarn. The possibilities for its use are endless, including textile GPS systems, to biomedical monitoring, personal security or even communication tools for those who are sensory impaired. The only limits are really within our own imagination."

At just one atom thick, graphene is the thinnest substance capable of conducting electricity. It is very flexible and is one of the strongest known materials. The race has been on for scientists and engineers to adapt graphene for the use in wearable electronic devices in recent years.

This new research has identified that 'monolayer graphene', which has exceptional electrical, mechanical and optical properties, make it a highly attractive proposition as a transparent electrode for applications in wearable electronics. In this work graphene was created by a growth method called chemical vapour deposition (CVD) onto copper foil, using a state-of-the-art nanoCVD system recently developed by Moorfield.

The collaborative team established a technique to transfer graphene from the copper foils to a polypropylene fibre already commonly used in the textile industry.

Dr Helena Alves who led the research team from INESC-MN and the University of Aveiro said: "The concept of wearable technology is emerging, but so far having fully textile-embedded transparent and flexible technology is currently non-existing. Therefore, the development of processes and engineering for the integration of graphene in textiles would give rise to a new universe of commercial applications. "

Dr Ana Neves, Associate Research Fellow in Prof Craciun's team from Exeter's Engineering Department and former postdoctoral researcher at INESC added: "We are surrounded by fabrics, the carpet floors in our homes or offices, the seats in our cars, and obviously all our garments and clothing accessories. The incorporation of electronic devices on fabrics would certainly be a game-changer in modern technology.

"All electronic devices need wiring, so the first issue to be address in this strategy is the development of conducting textile fibres while keeping the same aspect, comfort and lightness. The methodology that we have developed to prepare transparent and conductive textile fibres by coating them with graphene will now open way to the integration of electronic devices on these textile fibres"

Dr Isabel De Schrijver, an expert of smart textiles from CenTexBel said: "Successful manufacturing of wearable electronics has the potential for a disruptive technology with a wide array of potential new applications. We are very excited about the potential of this breakthrough and look forward to seeing where it can take the electronics industry in the future."

Professor Saverio Russo, co-author and also from the University of Exeter, added: "This breakthrough will also nurture the birth of novel and transformative research directions benefitting a wide range of sectors ranging from defence to health care. "

In 2012 Professor Craciun and Professor Russo, from the University of Exeter's Centre for Graphene Science, discovered GraphExeter - sandwiched molecules of ferric chloride between two graphene layers which makes a whole new system that is the best known transparent material able to conduct electricity. The same team recently discovered that GraphExeter is also more stable than many transparent conductors commonly used by, for example, the display industry.

Source: University of Exeter – 11.05.2015.

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

Researchers at the MIT Media Laboratory are developing a new wearable device that turns the user’s thumbnail into a miniature wireless track pad.

They envision that the technology could let users control wireless devices when their hands are full — answering the phone while cooking, for instance. It could also augment other interfaces, allowing someone texting on a cellphone, say, to toggle between symbol sets without interrupting his or her typing. Finally, it could enable subtle communication in circumstances that require it, such as sending a quick text to a child while attending an important meeting. The researchers describe a prototype of the device, called NailO, in a paper they’re presenting next week at the Association for Computing Machinery’s Computer-Human Interaction conference in Seoul, South Korea. According... mehr mehr lesen

New research shows how inkjet-printing technology can be used to mass-produce electronic circuits made of liquid-metal alloys for "soft robots" and flexible electronics.

Elastic technologies could make possible a new class of pliable robots and stretchable garments that people might wear to interact with computers or for therapeutic purposes. However, new manufacturing techniques must be developed before soft machines become commercially feasible, said Rebecca Kramer, an assistant professor of mechanical engineering at Purdue University. "We want to create stretchable electronics that might be compatible with soft machines, such as robots that need to squeeze through small spaces, or wearable technologies that aren't restrictive of motion," she said. "Conductors made from liquid metal can stretch and deform without breaking." A... mehr mehr lesen

University of Tokyo researchers have developed a "fever alarm armband," a flexible, self-powered wearable device that sounds an alarm in case of high body temperature.

This armband will be presented at the 2015 IEEE International Solid State Circuits Conference, San Francisco, on 22-26 February, 2015. The flexible organic components developed for this device are well-suited to wearable devices that continuously monitor vital signs including temperature and heart rate for applications in healthcare settings. The new device developed by research groups lead by Professor Takayasu Sakurai at the Institute of Industrial Science and Professor Takao Someya at the Graduate School of Engineering combines a flexible amorphous silicon solar panel, piezoelectric speaker, temperature sensor, and power supply circuit created with organic components in a single flexible... mehr mehr lesen

A new multiferroric film keeps its electric and magnetic properties even when highly curved, paving the way for potential uses in wearable devices

Electronic devices have shrunk rapidly in the past decades, but most remain as stiff as the same sort of devices were in the 1950s -- a drawback if you want to wrap your phone around your wrist when you go for a jog or fold your computer to fit in a pocket. Researchers from South Korea have taken a new step toward more bendable devices by manufacturing a thin film that keeps its useful electric and magnetic properties even when highly curved. The researchers describe the film in a paper published in the journal Applied Physics Letters, from AIP Publishing. Flexible electronics have been hard to manufacture because many materials with useful electronic properties tend to be rigid. Researchers... mehr mehr lesen


Partner der Woche

Suche in MaterialsgateNEWS

Bücher und Produkte