MMaterialsgateNEWS 2017/05/29

Researchers engineer shape-shifting noodles

Sheets of gelatin transform into 3-D shapes when dunked in water; could save food shipping costs.

“Don’t play with your food” is a saying that MIT researchers are taking with a grain or two of salt. The team is finding ways to make the dining experience interactive and fun, with food that can transform its shape when water is added.

The researchers, from MIT’s Tangible Media Group, have concocted something akin to edible origami, in the form of flat sheets of gelatin and starch that, when submerged in water, instantly sprout into three-dimensional structures, including common pasta shapes such as macaroni and rotini.

The edible films can also be engineered to fold into the shape of a flower as well as other unconventional configurations. Playing with the films’ culinary potential, the researchers created flat discs that wrap around beads of caviar, similar to cannoli, as well as spaghetti that spontaneously divides into smaller noodles when dunked in hot broth.

The researchers presented their work in a paper this month at the Association for Computing Machinery’s 2017 Computer-Human Interaction Conference on Human Factors in Computing Systems. They describe their shape-morphing creations as not only culinary performance art, but also a practical way to reduce food-shipping costs. For instance, the edible films could be stacked together and shipped to consumers, then morph into their final shape later, when immersed in water.

“We did some simple calculations, such as for macaroni pasta, and even if you pack it perfectly, you still will end up with 67 percent of the volume as air,” says Wen Wang, a co-author on the paper and a former graduate student and research scientist in MIT’s Media Lab. “We thought maybe in the future our shape-changing food could be packed flat and save space.”

Wang’s co-authors are Lining Yao, lead author and former graduate student; Chin-Yi Cheng, a former graduate student; Daniel Levine, a current graduate student; Teng Zhang of Syracuse University; and Hiroshi Ishii, the Jerome B. Wiesner Professor in media arts and sciences.

“This project is the one of the latest to materialize our vision of ‘radical atoms’ — combining human interactions with dynamic physical materials, which are transformable, conformable, and informable,” Ishii says.

Programmable pasta

At MIT, Wang and Yao had been investigating the response of various materials to moisture. They were working mostly with a certain bacterium that can transform its shape, shrinking and expanding in response to humidity. Coincidentally, that same bacterium is used to ferment soybeans to make a common Japanese dish known as natto. Yao and Wang wondered whether other edible materials could be designed to change their shape when exposed to water.

They started playing around with gelatin, a substance that naturally expands when it absorbs water. Gelatin can expand to varying degrees depending on its density — a characteristic that the team exploited in creating their shape-transforming structures.

Yao and Wang engineered a flat, two-layer film made from gelatin of two different densities. The top layer is more densely packed, and thus able to absorb more water, than the bottom. When the entire structure is immersed in water, the top layer curls over the bottom layer, forming a slowly rising arch.

The researchers looked for ways to control where and to what degree the structure bends, so that they might create different three-dimensional shapes from the gelatin sheet. They eventually settled on 3-D printing strips of edible cellulose over the top gelatin layer. The cellulose strips naturally absorb very little water, and they found that the strips could act as a water barrier, controlling the amount of water that the top gelatin layer is exposed to. By printing cellulose in various patterns onto gelatin, they could predictably control the structure’s response to water and the shapes that it ultimately assumed.

“This way you can have programmability,” Yao says. “You ultimately start to control the degree of bending and the total geometry of the structure.”

Designing for a noodle democracy

Wang and Yao created a number of different shapes from the gelatin films, from macaroni- and rigatoni-like configurations, to shapes that resembled flowers and horse saddles.

Curious as to how their designs might be implemented in a professional kitchen, the team showed their engineered edibles to the head chef of a high-end Boston restaurant. The scientists and chef struck up a short collaboration, during which they designed two culinary creations: transparent discs of gelatin flavored with plankton and squid ink, that instantly wrap around small beads of caviar; and long fettuccini-like strips, made from two gelatins that melt at different temperatures, causing the noodles to sponataneously divide when hot broth melts away certain sections.

“They had great texture and tasted pretty good,” Yao says.

The team recorded the cellulose patterns and the dimensions of all of the structures they were able to produce, and also tested mechanical properties such as toughness, organizing all this data into a database. Co-authors Zhang and Cheng then built computional models of the material’s transformations, which they used to design an online interface for users to design their own edible, shape-transforming structures.

“We did many lab tests and collected a database, within which you can pick different shapes, with fabrication instructions,” Wang says. “Reversibly, you can also select a basic pattern from the database and adjust the distribution or thickness, and can see how the final transformation will look.”

The researchers used a laboratory 3-D printer to pattern cellulose onto films of gelatin, but they have outlined ways in which users can reproduce similar effects with more common techniques, such as screenprinting.

“We envision that the online software can provide design instructions, and a startup company can ship the materials to your home,” Yao says. “With this tool, we want to democratize the design of noodles.”

Source: Massachusetts Institute of Technology – 24.05.2017.

Investigated and edited by:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Büro für Material- und Technologieberatung
The investigation and editing of this document was performed with best care and attention.
For the accuracy, validity, availability and applicability of the given information, we take no liability.
Please discuss the suitability concerning your specific application with the experts of the named company or organization.

You want additional material or technology investigations concerning this subject?

Materialsgate is leading in material consulting and material investigation.
Feel free to use our established consulting services

MMore on this topic

Ventilating flaps lined with live cells open and close in response to an athlete’s sweat.

A team of MIT researchers has designed a breathable workout suit with ventilating flaps that open and close in response to an athlete’s body heat and sweat. These flaps, which range from thumbnail- to finger-sized, are lined with live microbial cells that shrink and expand in response to changes in humidity. The cells act as tiny sensors and actuators, driving the flaps to open when an athlete works up a sweat, and pulling them closed when the body has cooled off. The researchers have also fashioned a running shoe with an inner layer of similar cell-lined flaps to air out and wick away moisture. Details of both designs are published today in Science Advances. Why use live cells in responsive... more read more

A team of researchers from Georgia Institute of Technology and two other institutions has developed a new 3-D printing method to create objects that can permanently transform into a range of different shapes in response to heat.

The team, which included researchers from the Singapore University of Technology and Design (SUTD) and Xi’an Jiaotong University in China, created the objects by printing layers of shape memory polymers with each layer designed to respond differently when exposed to heat. “This new approach significantly simplifies and increases the potential of 4-D printing by incorporating the mechanical programming post-processing step directly into the 3-D printing process,” said Jerry Qi, a professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech. “This allows high-resolution 3-D printed components to be designed by computer simulation, 3-D printed, and then directly... more read more

A team of Lawrence Livermore National Laboratory researchers has demonstrated the 3D printing of shape-shifting structures that can fold or unfold to reshape themselves when exposed to heat or electricity.

The micro-architected structures were fabricated from a conductive, environmentally responsive polymer ink developed at the Lab. In an article published recently by the journal Scientific Reports (link is external), Lab scientists and engineers revealed a strategy for creating boxes, spirals and spheres from shape memory polymers (SMPs), bio-based "smart" materials that exhibit shape-changes when resistively heated or when exposed to the appropriate temperature. While the approach of using responsive materials in 3D printing, often known as "4D printing," is not new, LLNL researchers are the first to combine the process of 3D printing and subsequent folding (via origami... more read more

Injuries, birth defects (such as cleft palates) or surgery to remove a tumor can create gaps in bone that are too large to heal naturally. And when they occur in the head, face or jaw, these bone defects can dramatically alter a person’s appearance.

Researchers will report today that they have developed a “self-fitting” material that expands with warm salt water to precisely fill bone defects, and also acts as a scaffold for new bone growth. The team will describe their approach in one of nearly 12,000 presentations at the 248th National Meeting & Exposition of the American Chemical Society (ACS), the world’s largest scientific society, taking place here through Thursday. Currently, the most common method for filling bone defects in the head, face or jaw (known as the cranio-maxillofacial area) is autografting. That is a process in which surgeons harvest bone from elsewhere in the body, such as the hip bone, and then try... more read more

MaterialsgateNEWSLETTER

Partner of the Week

Search in MaterialsgateNEWS

Books and products

MaterialsgateFAIR:
LET YOURSELF BE INSPIRED