MMaterialsgateNEWS vom 26.10.2009

The lotus's clever way of staying dry

An ancient Confucian philosopher once said, "I love the lotus because while growing from mud, it is unstained."
Now, almost one thousand years since Zhou Dunyi wrote these lines in China, scientists finally understand how the plant keeps itself clean and dry. It took an ultra high speed camera, a powerful microscope and an audio speaker to unlock a secret that has puzzled scientists for ages.

The process of solving this biological problem inspired Duke University engineers to make use of man-made surfaces resembling the lotus to improve the efficiency of modern engineering systems, such as power plants or electronic equipment, which must be cooled by removing heat through water evaporation and condensation.

For the first time, scientists were able to observe water as it condensed on the leaf's surface, and more importantly, how the water condensate left the leaf.

The trick lies in the surface of the plant's large leaves, and the subtle vibrations of nature. The leaves are covered with tiny irregular bumps spiked with even tinier hairs projecting upward. When a water droplet lands on this type of surface, it only touches the ends of the tiny hairs. The droplet is buoyed by air pockets below and ultimately is repelled off the leaf.

"We faced a tricky problem – water droplets that fall on the leaf easily roll off, while condensate that grows from within the leaf's nooks and crannies is sticky and remains trapped," said Jonathan Boreyko, a third-year graduate student at Duke's Pratt School of Engineering, who works in the laboratory of assistant professor Chuan-Hua Chen. The results of the team's experiments were published early on-line in the journal Physics Review Letters.

"Scientists and engineers have long wondered how these sticky drops are eventually repelled from the leaf after their impalement into the tiny projections," Boreyko said. "After bringing lotus leaves into the lab and watching the condensation as it formed, we were able to see how the sticky drops became unsticky."

The key was videotaping the process while the lotus leaf rested on top of the woofer portion of a stereo speaker at low frequency. Condensation was created by cooling the leaf. It turned out that after being gently vibrated for a fraction of a second, the sticky droplets gradually unstuck themselves and jumped off the leaf.

Voila, a dry leaf.

"This solves a long-standing puzzle in the field," Chen said. "People have observed that condensation forms every night on the lotus leaf. When they come back in the morning the water is gone and the leaf is dry. The speaker reproduced in the lab what happens every day in nature, which is full of subtle vibrations, especially for the lotus, which has large leaves atop long and slender stems."

The results of these experiments, as well as earlier ones showing for the first time that water droplets spontaneously "jump" off a highly water-repellent, or superhydrophobic, surface, will allow engineers to employ man-made surfaces much like the lotus leaf in settings where the removal of condensation and the transfer of heat are necessary.

We have revealed the physics behind anti-dew superhydrophobicity, a vital property for water-repellent materials to be deployed in the real world," Chen said. "These materials will be used in humid or cold environments where condensation will naturally occur. Our findings point to a new direction to develop water-repellent materials that would survive in demanding natural environments, and have strong implications for a variety of engineering applications including non-sticking textiles, self-cleaning optics and drag-reducing hulls."

Source: Duke University – 22.10.2009.

Weitere Informationen

Richard Merritt
richard.merritt@duke.edu
Duke University

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

A plant that lives along muddy waterways in Asia has inspired a NASA team to develop a special coating to prevent dirt and even bacteria from sticking to and contaminating the surfaces of spaceflight gear.
Researchers at NASA's Goddard Space Flight Center in Greenbelt, Md., are developing a transparent coating that prevents dirt from sticking in the same way a lotus plant sheds water — work begun through collaboration with Northrop Grumman Electronics Systems, Linthicum, Md., and nGimat Corporation, Atlanta, Ga. Although a lotus leaf appears smooth, under a microscope, its surface contains innumerable tiny spikes that greatly reduce the area on which water and dirt can attach. "If you... mehr
Self-cleaning walls, counter tops, fabrics, even micro-robots that can walk on water -- all those things and more could be closer to reality thanks to research recently completed by scientists at the University of Nebraska-Lincoln and at Japan's RIKEN institute.
Humans have marveled for millennia at how water beads up and rolls off flowers, caterpillars and some insects, and how insects like water striders are able to walk effortlessly on water. It's a property called super hydrophobia and it's been examined seriously by scientists since at least the 1930s. "A lot of people study this and engineers especially like the water strider because it can walk on water," said Xiao Cheng Zeng, Ameritas university professor of chemistry at UNL... mehr
Das Fraunhofer IWS hat ein neues Verfahren zur chemischen Dampfphasenabscheidung (AP-CVD) von Oxid-Schichten bei Atmosphärendruck und niedriger Temperatur entwickelt.
Es ermöglicht eine kontinuierliche Großflächenbeschichtung von Bändern ebenso wie von ebenen Blechen oder Platten mit photokatalytisch aktiven Titandioxidschichten. Die Schichten können homogen in Schichtdicken zwischen 30 und 1200 nm aufgetragen werden. Vor allem durch die Herabsetzung der Substrattemperatur auf bis 100 °C sind photokatalytische und superhydrophile Eigenschaften nun auch auf temperatursensitiven Materialien wie Polymerfolien umsetzbar. Bei Titandioxidschichten (TiO2) ermöglicht... mehr

Partner des Monats

Materialsgate Login