MMaterialsgateNEWS vom 07.11.2011

Bionik: Vorbild der Muschel eröffnet neue Perspektiven für Implantatmedizin

Neuartige biomimetische Oberflächenbeschichtung verhindert Infektionen und Biofouling - die an der Justus-Liebig-Universität Gießen entwickelte Erfindung wird von der TransMIT GmbH verwertet
Im Bereich der funktionellen Oberflächenmodifikation sind in jüngster Zeit in einem breiten Spektrum von Anwendungsfeldern erhebliche Fortschritte erzielt worden. Vor allem in der Medizin und im gesamten Gesundheitssektor können sich geeignete Oberflächenfunktionalisierungen als außerordentlich nützlich erweisen. Die von Prof. Dr. Wolfgang Maison und seinen Mitarbeitern am Institut für Organische Chemie der Justus-Liebig-Universität Gießen gemachte Erfindung eröffnet nun gänzlich neue Perspektiven insbesondere für die Implantatmedizin.

Aufgrund der von den Gießener Wissenschaftlern synthetisierten Verbindungen zur Funktionalisierung von Metall- und Knochenoberflächen ist es möglich, eine dauerhafte und stabile Oberflächenbeschichtung zu erreichen. Als natürliches Vorbild diente den Forschern dabei die unter anderem vom marinen Biofouling an Schiffsrümpfen bekannte einzigartige Anhaftungsfähigkeit von Muscheln. Die sogenannten Muscheladhäsionsproteine zählen zu den stabilsten Klebstoffen, die in der Natur vorkommen.

Aus den damit verknüpften Eigenschaften ergibt sich ein weites Feld von Einsatzmöglichkeiten. Da mit den neuartigen Verbindungen dauerhafte Oberflächenbeschichtungen sowohl auf medizinisch relevanten Metallen wie etwa Eisen oder Titan als auch direkt auf Knochen und Zähnen realisiert werden können, sind sie beispielweise für orthopädische Implantate oder Zahnimplantate von hohem Interesse. „So können etwa durch die Beschichtung Infektionen und das Biofouling, also die Anlagerung von Bakterien und Proteinen, verhindert sowie das Anwachsen des Knochens deutlich verbessert werden“, erläutert Prof. Maison wesentliche Vorzüge der Erfindung.

Gerade im Sektor der kosmetischen Zahnmedizin gelten biomimetische Verfahren und Materialien derzeit als Schlüsselfaktoren für die künftige Entwicklung. Im Falle von Zahnimplantaten kommt der langfristigen Biokompatibilität, aber auch der natürlichen Erscheinung aus ästhetischen Gründen eine wachsende Bedeutung zu. Bei orthopädischen Implantaten wie etwa dem stetig zunehmenden Einsatz von Hüft- oder Knieprothesen erweisen sich dauerhafte Beschichtungen ebenfalls als ausschlaggebend für den langfristigen Heilungsverlauf.

„Darüber hinaus lassen sich die international zum Patent angemeldeten Verbindungen aufgrund ihrer besonderen Eigenschaften allerdings auch in anderen Bereichen vielfältig einsetzen“, betont Dr. Peter Stumpf, Geschäftsführer der TransMIT GmbH. „Denkbar sind beispielsweise entsprechende Oberflächenmodifikationen für Stents, Spritzen und Katheter, antibakterielle Beschichtungen von Türklinken etwa in Krankenhäusern, die Verwendung als Biosensoren oder sogar beständige Anstriche von Schiffsrümpfen zur Vermeidung des Biofouling, das für die maritime Industrie nach wie vor enorme Kosten verursacht.“

Quelle: TransMIT GmbH - 03.11.2011.

Weitere Informationen

Prof. Dr. Wolfgang Maison
Universität Hamburg
Fachbereich Chemie,
Medizinische/Pharmazeutische Chemie
Bundesstraße 45
20146 Hamburg
Telefon: +49 (40) 42838 - 3497
E-Mail: maison@chemie.uni-hamburg.de

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

Erste Prototypen von körperverträglichen Knochenimplantaten aus Magnesium sollen in den kommenden vier Jahren in dem neuen EU-Projekt „Tailored biodegradable magnesium implant materials“(MagnIM) entwickelt und getestet werden.
Koordiniert wird das mit drei Millionen Euro ausgestattete Großprojekt vom Helmholtz-Zentrum Geesthacht (HZG). Die verantwortliche Projektleiterin ist die Leiterin der HZG-Abteilung „Strukturforschung an Makromolekülen“, Prof. Dr. Regine Willumeit. In Geesthacht werden bereits seit längerem metallische Biomaterialien auf Titan- oder Magnesiumbasis erforscht und entwickelt. Implantate aus dem Leichtmetall Magnesium unterstützen die Knochenregeneration und lösen sich im Körper nach definierter... mehr
Durch eine spezielle Anwendung der plasmachemischen Oxidation ist es Thüringer Forschern gelungen, eine poröse, bioaktive Oberfläche auf Titanimplantaten zu erzeugen. In einer vorklinischen Studie konnten die Chirurgen, Materialwissenschaftler und Implantathersteller nachweisen, dass die neuartige Oberfläche im Vergleich zu herkömmlichen Implantaten ein mehrfach festeres Einwachsen in das Knochengewebe ermöglicht.
Seine Ergebnisse veröffentlichte der Forschungsverbund kürzlich im Fachjournal Biomaterials. In den Knochen eingesetzte Implantate und Prothesen, die dauerhaft im Körper verbleiben sollen, müssen vor allem eines: schnell und sehr fest mit dem Knochengewebe verwachsen, um starken mechanischen Belastungen standhalten zu können. Das gilt für die Verankerung künstlicher Hüft-, Knie- oder Schultergelenke ebenso wie für Zahnimplantate im Kieferknochen. „Aktuell sehen wir uns in der Orthopädie... mehr
In recent years, researchers have worked to develop more flexible, functional prosthetics for soldiers returning home from battlefields in Afghanistan or Iraq with missing arms or legs. But even new prosthetics have trouble keeping bacteria from entering the body through the space where the device has been implanted.
"You need to close (the area) where the bacteria would enter the body, and that's where the skin is," said Thomas Webster, associate professor of engineering and orthopaedics at Brown University. Webster and a team of researchers at Brown may have come across the right formula to deter bacterial migrants. The group reports two ways in which it modified the surface of titanium leg implants to promote skin cell growth, thereby creating a natural skin layer and sealing the gap where... mehr
Innovative Materialien sollen Keimbesiedlung auf Implantaten verhindern. Erste Produktentwicklungen schon in naher Zukunft zu erwarten.
Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz entwickeln derzeit Materialien, die das Entzündungsrisiko nach Operationen und in Wunden deutlich vermindern sollen. Die Forscher arbeiten dazu in dem EU-Projekt EMBEK1 mit neun weiteren Forschungszentren und Industriepartnern aus Spanien, Großbritannien, der Schweiz und Deutschland zusammen. Die Studie ist auf drei Jahre angelegt und wird von der Europäischen Union mit 2,9 Millionen Euro gefördert... mehr

Partner des Monats

Materialsgate Login

Empfohlene MaterialsgateCARDS

Materialsgate Glossar