MMaterialsgateNEWS vom 25.11.2010

Trained bacteria convert bio-wastes into plastic

Joint press release from NWO and TU Delft Researcher Jean-Paul Meijnen has 'trained' bacteria to convert all the main sugars in vegetable, fruit and garden waste efficiently into high-quality environmentally friendly products such as bioplastics.
He will be defending his doctoral thesis on this topic, which was carried out in the context of the NWO B-Basic programme, at TU Delft on Monday 22 November 2010. There is considerable interest in bioplastics nowadays. The technical problems associated with turning potato peel into sunglasses, or cane sugar into car bumpers, have already been solved. The current methods, however, are not very efficient: only a small percentage of the sugars can be converted into valuable products. By adapting the eating pattern of bacteria and subsequently training them, Meijnen has succeeded in converting sugars in processable materials, so that no bio-waste is wasted. Basis for bioplastics The favoured raw materials for such processes are biological wastes left over from food production. Lignocellulose, the complex combination of lignin and cellulose present in the stalks and leaves of plants that gives them their rigidity, is such a material. Hydrolysis of lignocellulose breaks down the long sugar chains that form the backbone of this material, releasing the individual sugar molecules. These sugar molecules can be further processed by bacteria and other micro-organisms to form chemicals that can be used as the basis for bioplastics. The fruit of the plant, such as maize, can be consumed as food, while the unused waste such as lignocellulose forms the raw material for bioplastics. Cutting the price of the process "Unfortunately, the production of plastics from bio-wastes is still

Materialsgate Zugang

Damit Sie unser MaterialsgateNEWS Archiv nutzen können, ist ein kostenloser Materialsgate Zugang erforderlich. Registrieren Sie sich jetzt oder benutzen Sie den Login in der rechten Spalte

Recherchiert und dokumentiert von:

Dr.-Ing. Christoph Konetschny, Inhaber und Gründer von Materialsgate
Die Recherche und Aufbereitung der in diesem Dokument genannten Daten erfolgte mit größter Sorgfalt.
Für die Richtigkeit, Gültigkeit, Verfügbarkeit und Anwendbarkeit der genannten Daten übernehmen wir zu keinem Zeitpunkt die Haftung.
Bitte diskutieren Sie die Verwendung und Eignung für Ihren konkreten Anwendungsfall mit den Experten der genannten Institution.

Sie wünschen Material- und Technologierecherchen zu diesem Thema?

Materialsgate steht für hochwertige Werkstoffberatung und innovative Materialrecherchen.
Nutzen Sie unseren Beratungsservice

MMehr zu diesem Thema

One-step process derives raw material for fuels and plastic from plants rather than crude oil
Some researchers hope to turn plants into a renewable, nonpolluting replacement for crude oil. To achieve this, scientists have to learn how to convert plant biomass into a building block for plastics and fuels cheaply and efficiently. In new research, chemists have successfully converted cellulose -- the most common plant carbohydrate -- directly into the building block called HMF in one step. The result builds upon earlier work by researchers at the Department of Energy's Pacific Northwest... mehr
MU researchers working toward making biodegradable plastics from plants a reality
More than 20 million tons of plastic are placed in U.S. landfills each year. Results from a new University of Missouri study suggest that some of the largely petroleum-based plastic may soon be replaced by a nonpolluting, renewable plastic made from plants. Reducing the carbon footprint and the dependence on foreign oil, this new 'green' alternative may also provide an additional cash crop for farmers. "Making plastics from plants is not a new idea," said Brian Mooney, research... mehr
In an effort to develop a new source of sustainable energy, researchers at Polytechnic University have bioengineered a fuel-latent plastic that can be converted into biodiesel.
The Defense Advanced Research Projects Agency (DARPA), the central research and development organization for the US Department of Defense, has awarded the researchers $2.34 million to advance this innovative technology and transfer it to industry. The commercialization of the technology will lead to a new source of green energy to households worldwide. Professor Richard Gross, director of Polytechnic University’s National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules... mehr
Lesen Sie auch:

Partner des Monats

Materialsgate Login

Empfohlene MaterialsgateCARDS

Materialsgate Glossar